L(s) = 1 | − 9-s − 4·13-s + 2·17-s − 6·19-s − 25-s + 8·43-s − 14·47-s + 5·49-s − 2·53-s + 28·67-s + 81-s + 32·83-s + 16·89-s + 24·101-s − 4·103-s + 4·117-s + 13·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 2·153-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 1/3·9-s − 1.10·13-s + 0.485·17-s − 1.37·19-s − 1/5·25-s + 1.21·43-s − 2.04·47-s + 5/7·49-s − 0.274·53-s + 3.42·67-s + 1/9·81-s + 3.51·83-s + 1.69·89-s + 2.38·101-s − 0.394·103-s + 0.369·117-s + 1.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.161·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.717987056\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.717987056\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.675384334165728676510446664704, −8.268589431134327844546454461965, −7.70633803944749711034125703785, −7.68221876335684161538443157909, −7.28481250713467774624553168335, −6.52423080951018741557147171601, −6.49475463201529702524408320851, −6.24873716954586493203556356462, −5.52113463609601605149037438914, −5.27068454661324805654277617250, −4.89211220257082829283662556724, −4.53606063478198043933885251610, −4.05524264944778685382928604950, −3.47764141289984447967550198570, −3.36568070754930469029056588118, −2.55620436763234161304050576658, −2.16000282834970843463843863785, −1.99975018061382739993829951365, −0.990401804663595607157165163897, −0.42653798816578584800145683481,
0.42653798816578584800145683481, 0.990401804663595607157165163897, 1.99975018061382739993829951365, 2.16000282834970843463843863785, 2.55620436763234161304050576658, 3.36568070754930469029056588118, 3.47764141289984447967550198570, 4.05524264944778685382928604950, 4.53606063478198043933885251610, 4.89211220257082829283662556724, 5.27068454661324805654277617250, 5.52113463609601605149037438914, 6.24873716954586493203556356462, 6.49475463201529702524408320851, 6.52423080951018741557147171601, 7.28481250713467774624553168335, 7.68221876335684161538443157909, 7.70633803944749711034125703785, 8.268589431134327844546454461965, 8.675384334165728676510446664704