Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 16 x + 83 x^{2} )^{2}$ |
| $1 - 32 x + 422 x^{2} - 2656 x^{3} + 6889 x^{4}$ | |
| Frobenius angles: | $\pm0.158801688027$, $\pm0.158801688027$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $14$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4624$ | $46240000$ | $326813448976$ | $2252831296000000$ | $15516830147685260944$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $6710$ | $571564$ | $47469678$ | $3939240932$ | $326942635430$ | $27136070558684$ | $2252292357492958$ | $186940255648971412$ | $15516041182904374550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=39 x^6+73 x^5+31 x^4+3 x^3+31 x^2+73 x+39$
- $y^2=3 x^6+23 x^5+76 x^4+79 x^2+41 x$
- $y^2=65 x^6+11 x^5+72 x^4+80 x^3+72 x^2+11 x+65$
- $y^2=51 x^6+22 x^5+34 x^4+68 x^3+9 x^2+41 x+57$
- $y^2=79 x^6+20 x^5+81 x^4+47 x^3+81 x^2+20 x+79$
- $y^2=75 x^6+48 x^4+48 x^2+75$
- $y^2=80 x^6+68 x^5+45 x^4+45 x^2+68 x+80$
- $y^2=6 x^6+7 x^5+31 x^4+26 x^3+11 x^2+9 x+80$
- $y^2=4 x^6+64 x^5+58 x^4+29 x^3+13 x^2+19 x+3$
- $y^2=57 x^6+27 x^5+57 x^4+49 x^3+58 x^2+16 x+19$
- $y^2=38 x^6+75 x^4+75 x^2+38$
- $y^2=2 x^6+67 x^5+69 x^4+16 x^3+15 x^2+82 x+58$
- $y^2=43 x^6+42 x^4+42 x^2+43$
- $y^2=76 x^6+22 x^5+71 x^4+66 x^3+24 x^2+5 x+56$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The isogeny class factors as 1.83.aq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ |
Base change
This is a primitive isogeny class.