L(s) = 1 | + 2·5-s − 9-s + 6·11-s + 6·19-s − 25-s − 18·29-s + 20·31-s + 18·41-s − 2·45-s − 11·49-s + 12·55-s − 4·59-s − 16·61-s + 28·79-s + 81-s − 20·89-s + 12·95-s − 6·99-s + 24·101-s − 8·109-s + 5·121-s − 12·125-s + 127-s + 131-s + 137-s + 139-s − 36·145-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 1/3·9-s + 1.80·11-s + 1.37·19-s − 1/5·25-s − 3.34·29-s + 3.59·31-s + 2.81·41-s − 0.298·45-s − 1.57·49-s + 1.61·55-s − 0.520·59-s − 2.04·61-s + 3.15·79-s + 1/9·81-s − 2.11·89-s + 1.23·95-s − 0.603·99-s + 2.38·101-s − 0.766·109-s + 5/11·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.98·145-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.087932490\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.087932490\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.892965752643198093879885738717, −8.073419065897992442593698920991, −7.80920598877544450684320066358, −7.68890786552289727063054964526, −7.16158539317533809619384532199, −6.61632785647335872713414092995, −6.34336516413846296818840958321, −6.02521393351708228044451450252, −5.87627618091990320965875753314, −5.27462872895707065078393488640, −4.92555605849474306627448735944, −4.45560089338045654810322872221, −3.92756432202477772802475673772, −3.77389459555201031357691930769, −3.05042532205806082692255862442, −2.80263971952542366192847975899, −2.16288424527309558308191178347, −1.61503053817501359258444373248, −1.24908488843468204699211872750, −0.61566727083096377946701573493,
0.61566727083096377946701573493, 1.24908488843468204699211872750, 1.61503053817501359258444373248, 2.16288424527309558308191178347, 2.80263971952542366192847975899, 3.05042532205806082692255862442, 3.77389459555201031357691930769, 3.92756432202477772802475673772, 4.45560089338045654810322872221, 4.92555605849474306627448735944, 5.27462872895707065078393488640, 5.87627618091990320965875753314, 6.02521393351708228044451450252, 6.34336516413846296818840958321, 6.61632785647335872713414092995, 7.16158539317533809619384532199, 7.68890786552289727063054964526, 7.80920598877544450684320066358, 8.073419065897992442593698920991, 8.892965752643198093879885738717