L(s) = 1 | − 3·2-s + 2·3-s + 4·4-s − 6·6-s − 3·8-s + 3·9-s − 2·11-s + 8·12-s + 6·13-s + 3·16-s − 2·17-s − 9·18-s + 2·19-s + 6·22-s − 10·23-s − 6·24-s − 18·26-s + 4·27-s − 4·29-s − 6·32-s − 4·33-s + 6·34-s + 12·36-s − 2·37-s − 6·38-s + 12·39-s + 16·41-s + ⋯ |
L(s) = 1 | − 2.12·2-s + 1.15·3-s + 2·4-s − 2.44·6-s − 1.06·8-s + 9-s − 0.603·11-s + 2.30·12-s + 1.66·13-s + 3/4·16-s − 0.485·17-s − 2.12·18-s + 0.458·19-s + 1.27·22-s − 2.08·23-s − 1.22·24-s − 3.53·26-s + 0.769·27-s − 0.742·29-s − 1.06·32-s − 0.696·33-s + 1.02·34-s + 2·36-s − 0.328·37-s − 0.973·38-s + 1.92·39-s + 2.49·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13505625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13505625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.237796079\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.237796079\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.668055328510231159726624731388, −8.563362030179154189249851116051, −8.005408716677935806331482791598, −7.918994549516426320785882137870, −7.37280407324740512629002937130, −7.36442530273358895091899432444, −6.74483141747641033482288038539, −6.11830722046096385990745403622, −5.84504124464702679918995066724, −5.72112016290433679747410834397, −4.79122456603031799517233706677, −4.43070634832946540365962644354, −3.88713232929704353412486717113, −3.48663380880317772519994741935, −3.25210509714808960555714928455, −2.42488400560722441349749799093, −2.03701692734220149177413444035, −1.75182512055352581626648230639, −0.912485903142973144279626117373, −0.56063986540561002413308348445,
0.56063986540561002413308348445, 0.912485903142973144279626117373, 1.75182512055352581626648230639, 2.03701692734220149177413444035, 2.42488400560722441349749799093, 3.25210509714808960555714928455, 3.48663380880317772519994741935, 3.88713232929704353412486717113, 4.43070634832946540365962644354, 4.79122456603031799517233706677, 5.72112016290433679747410834397, 5.84504124464702679918995066724, 6.11830722046096385990745403622, 6.74483141747641033482288038539, 7.36442530273358895091899432444, 7.37280407324740512629002937130, 7.918994549516426320785882137870, 8.005408716677935806331482791598, 8.563362030179154189249851116051, 8.668055328510231159726624731388