| L(s) = 1 | − 3-s − 5-s + 4·7-s + 3·9-s + 11-s + 2·13-s + 15-s + 5·17-s + 7·19-s − 4·21-s + 23-s + 5·25-s − 8·27-s + 20·29-s − 3·31-s − 33-s − 4·35-s + 11·37-s − 2·39-s − 20·41-s − 16·43-s − 3·45-s − 9·47-s + 9·49-s − 5·51-s + 9·53-s − 55-s + ⋯ |
| L(s) = 1 | − 0.577·3-s − 0.447·5-s + 1.51·7-s + 9-s + 0.301·11-s + 0.554·13-s + 0.258·15-s + 1.21·17-s + 1.60·19-s − 0.872·21-s + 0.208·23-s + 25-s − 1.53·27-s + 3.71·29-s − 0.538·31-s − 0.174·33-s − 0.676·35-s + 1.80·37-s − 0.320·39-s − 3.12·41-s − 2.43·43-s − 0.447·45-s − 1.31·47-s + 9/7·49-s − 0.700·51-s + 1.23·53-s − 0.134·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.840213715\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.840213715\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.58691479531909708624145173386, −11.53510397136054144277286312365, −10.68540691769198290440766634799, −10.29228825986606117490130983387, −10.01140677682857241135101230196, −9.509753793556838884887677339583, −8.574618356884655163591066707820, −8.465221014482521346219318506177, −7.87014671581200012252903570335, −7.53762956378987279161791299314, −6.71354762204812753123946089907, −6.67683100681408548193944613037, −5.67700845498465212838917227842, −5.22239456930474475640582670280, −4.65854418158152324935410839958, −4.46402841445310318677942759128, −3.39075986614740874725387306261, −3.01531097051232033301670028275, −1.38071571072859150145079089404, −1.32259090172642132570892459143,
1.32259090172642132570892459143, 1.38071571072859150145079089404, 3.01531097051232033301670028275, 3.39075986614740874725387306261, 4.46402841445310318677942759128, 4.65854418158152324935410839958, 5.22239456930474475640582670280, 5.67700845498465212838917227842, 6.67683100681408548193944613037, 6.71354762204812753123946089907, 7.53762956378987279161791299314, 7.87014671581200012252903570335, 8.465221014482521346219318506177, 8.574618356884655163591066707820, 9.509753793556838884887677339583, 10.01140677682857241135101230196, 10.29228825986606117490130983387, 10.68540691769198290440766634799, 11.53510397136054144277286312365, 11.58691479531909708624145173386