L(s) = 1 | + 2-s + 5·5-s − 2·7-s + 8-s + 5·10-s + 11-s + 2·13-s − 2·14-s − 16-s + 5·17-s − 7·19-s + 22-s − 3·23-s + 12·25-s + 2·26-s + 8·29-s − 6·32-s + 5·34-s − 10·35-s − 6·37-s − 7·38-s + 5·40-s + 18·41-s + 5·43-s − 3·46-s + 9·47-s − 11·49-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 2.23·5-s − 0.755·7-s + 0.353·8-s + 1.58·10-s + 0.301·11-s + 0.554·13-s − 0.534·14-s − 1/4·16-s + 1.21·17-s − 1.60·19-s + 0.213·22-s − 0.625·23-s + 12/5·25-s + 0.392·26-s + 1.48·29-s − 1.06·32-s + 0.857·34-s − 1.69·35-s − 0.986·37-s − 1.13·38-s + 0.790·40-s + 2.81·41-s + 0.762·43-s − 0.442·46-s + 1.31·47-s − 1.57·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.223888244\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.223888244\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87881010773848584604510109492, −10.96632760512361187435883141703, −10.86207915658704134277858263223, −10.23686429166615985935362348652, −9.816225623354839980054513278094, −9.657874541498972227081295703374, −8.958084264753605810503780161478, −8.684436462320449432023153210425, −7.983282360637784219511460652492, −7.26090966157808981618460348382, −6.64389701921348176929445455401, −6.25161766782969212506130360366, −5.78398706958049095128073790077, −5.64807113852620899683647244577, −4.67324741992451976949119887348, −4.32979182289466911112539596343, −3.52832995184545241146778429788, −2.70744784226701525052801596168, −2.12516934195810893521729824153, −1.31726451116100674971788723911,
1.31726451116100674971788723911, 2.12516934195810893521729824153, 2.70744784226701525052801596168, 3.52832995184545241146778429788, 4.32979182289466911112539596343, 4.67324741992451976949119887348, 5.64807113852620899683647244577, 5.78398706958049095128073790077, 6.25161766782969212506130360366, 6.64389701921348176929445455401, 7.26090966157808981618460348382, 7.983282360637784219511460652492, 8.684436462320449432023153210425, 8.958084264753605810503780161478, 9.657874541498972227081295703374, 9.816225623354839980054513278094, 10.23686429166615985935362348652, 10.86207915658704134277858263223, 10.96632760512361187435883141703, 11.87881010773848584604510109492