Properties

Label 2.53.p_fd
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $1 + 15 x + 133 x^{2} + 795 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.545886106919$, $\pm0.846903149360$
Angle rank:  $2$ (numerical)
Number field:  4.0.1592149.1
Galois group:  $D_{4}$
Jacobians:  $111$
Isomorphism classes:  185

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3753$ $8005149$ $22131129501$ $62237864079621$ $174886090339103568$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $69$ $2851$ $148653$ $7887715$ $418192194$ $22164842347$ $1174707192273$ $62259696018979$ $3299763659416209$ $174887470392064486$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 111 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The endomorphism algebra of this simple isogeny class is 4.0.1592149.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ap_fd$2$(not in LMFDB)