Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 15 x + 133 x^{2} + 795 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.545886106919$, $\pm0.846903149360$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1592149.1 |
Galois group: | $D_{4}$ |
Jacobians: | $111$ |
Isomorphism classes: | 185 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3753$ | $8005149$ | $22131129501$ | $62237864079621$ | $174886090339103568$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $69$ | $2851$ | $148653$ | $7887715$ | $418192194$ | $22164842347$ | $1174707192273$ | $62259696018979$ | $3299763659416209$ | $174887470392064486$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 111 curves (of which all are hyperelliptic):
- $y^2=18 x^6+19 x^5+35 x^4+46 x^3+28 x^2+15 x+31$
- $y^2=6 x^6+20 x^5+40 x^4+19 x^3+10 x^2+5 x+27$
- $y^2=12 x^6+26 x^5+5 x^4+22 x^3+39 x^2+24 x+32$
- $y^2=43 x^6+39 x^5+47 x^4+22 x^3+19 x^2+27 x+17$
- $y^2=6 x^6+45 x^5+47 x^4+43 x^3+33 x^2+20 x+11$
- $y^2=46 x^6+30 x^5+52 x^4+45 x^3+40 x^2+12 x+6$
- $y^2=51 x^6+2 x^5+7 x^4+43 x^3+33 x^2+2 x+5$
- $y^2=17 x^6+24 x^5+21 x^4+43 x^3+27 x^2+47 x+32$
- $y^2=28 x^6+4 x^5+21 x^4+32 x^3+34 x^2+35 x+37$
- $y^2=7 x^6+45 x^5+30 x^4+22 x^3+41 x^2+30 x+35$
- $y^2=29 x^6+11 x^5+x^4+41 x^3+48 x^2+11 x+9$
- $y^2=2 x^6+28 x^5+36 x^4+46 x^3+31 x^2+27 x+23$
- $y^2=15 x^6+35 x^5+37 x^4+5 x^3+6 x^2+29 x+16$
- $y^2=5 x^6+43 x^5+46 x^4+9 x^3+52 x^2+52 x+16$
- $y^2=30 x^6+50 x^5+41 x^4+21 x^3+33 x^2+6 x+3$
- $y^2=37 x^6+6 x^5+19 x^4+14 x^3+33 x^2+28 x+9$
- $y^2=15 x^6+x^5+34 x^4+48 x^3+29 x^2+9 x+48$
- $y^2=32 x^6+43 x^5+32 x^4+24 x^3+31 x^2+24 x+45$
- $y^2=21 x^6+18 x^5+43 x^4+26 x^3+2 x^2+19 x+37$
- $y^2=46 x^6+40 x^5+42 x^4+10 x^3+19 x^2+11 x+47$
- and 91 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is 4.0.1592149.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ap_fd | $2$ | (not in LMFDB) |