Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 10 x + 190 x^{2} - 890 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.349248324938$, $\pm0.476453637393$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.16870256.1 |
Galois group: | $D_{4}$ |
Jacobians: | $192$ |
Isomorphism classes: | 256 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7212$ | $64994544$ | $498414403692$ | $3935954154329856$ | $31180835152556051052$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $8202$ | $707000$ | $62732126$ | $5583901000$ | $496981217322$ | $44231339181760$ | $3936588801664318$ | $350356404042266720$ | $31181719938479221002$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 192 curves (of which all are hyperelliptic):
- $y^2=22 x^6+67 x^5+44 x^4+85 x^3+8 x^2+30 x+22$
- $y^2=14 x^6+37 x^5+60 x^4+47 x^3+55 x^2+81 x+46$
- $y^2=10 x^6+52 x^5+68 x^4+60 x^3+42 x^2+39 x+38$
- $y^2=55 x^6+32 x^5+59 x^4+70 x^3+40 x^2+63 x+28$
- $y^2=44 x^6+39 x^5+32 x^4+4 x^3+35 x^2+13 x+20$
- $y^2=19 x^6+35 x^5+34 x^4+8 x^3+76 x^2+56 x+70$
- $y^2=46 x^6+69 x^5+10 x^4+53 x^3+59 x^2+61 x+5$
- $y^2=11 x^6+64 x^5+43 x^4+4 x^2+14 x+38$
- $y^2=41 x^6+58 x^5+32 x^4+59 x^3+11 x^2+66 x+83$
- $y^2=84 x^6+40 x^5+84 x^4+44 x^3+32 x^2+73 x$
- $y^2=9 x^6+60 x^5+9 x^4+30 x^3+14 x^2+42 x+74$
- $y^2=7 x^6+59 x^5+8 x^4+86 x^3+31 x^2+26 x+1$
- $y^2=54 x^6+86 x^5+36 x^4+54 x^3+27 x^2+37 x+75$
- $y^2=87 x^6+65 x^5+43 x^4+58 x^3+22 x^2+6 x+35$
- $y^2=7 x^6+69 x^5+37 x^4+29 x^3+53 x^2+49 x+56$
- $y^2=48 x^6+24 x^5+52 x^4+39 x^3+9 x^2+75 x+68$
- $y^2=58 x^6+12 x^5+34 x^4+82 x^3+65 x^2+14 x+11$
- $y^2=41 x^6+80 x^5+22 x^4+34 x^3+19 x^2+43 x+1$
- $y^2=43 x^6+68 x^5+24 x^4+42 x^3+51 x^2+62 x+57$
- $y^2=21 x^6+7 x^5+27 x^4+85 x^3+38 x^2+18 x+38$
- and 172 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.16870256.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.k_hi | $2$ | (not in LMFDB) |