Properties

Label 2.89.ak_hi
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $1 - 10 x + 190 x^{2} - 890 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.349248324938$, $\pm0.476453637393$
Angle rank:  $2$ (numerical)
Number field:  4.0.16870256.1
Galois group:  $D_{4}$
Jacobians:  $192$
Isomorphism classes:  256

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7212$ $64994544$ $498414403692$ $3935954154329856$ $31180835152556051052$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $80$ $8202$ $707000$ $62732126$ $5583901000$ $496981217322$ $44231339181760$ $3936588801664318$ $350356404042266720$ $31181719938479221002$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 192 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The endomorphism algebra of this simple isogeny class is 4.0.16870256.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.k_hi$2$(not in LMFDB)