-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 7212, 'abvar_counts': [7212, 64994544, 498414403692, 3935954154329856, 31180835152556051052, 246990366966838701316464, 1956411176226189317753066412, 15496731409283917320060126720000, 122749609736135201295065659494902892, 972299658056301445959349217584249966704], 'abvar_counts_str': '7212 64994544 498414403692 3935954154329856 31180835152556051052 246990366966838701316464 1956411176226189317753066412 15496731409283917320060126720000 122749609736135201295065659494902892 972299658056301445959349217584249966704 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.3492483249376, 0.476453637392597], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 80, 'curve_counts': [80, 8202, 707000, 62732126, 5583901000, 496981217322, 44231339181760, 3936588801664318, 350356404042266720, 31181719938479221002], 'curve_counts_str': '80 8202 707000 62732126 5583901000 496981217322 44231339181760 3936588801664318 350356404042266720 31181719938479221002 ', 'curves': ['y^2=22*x^6+67*x^5+44*x^4+85*x^3+8*x^2+30*x+22', 'y^2=14*x^6+37*x^5+60*x^4+47*x^3+55*x^2+81*x+46', 'y^2=10*x^6+52*x^5+68*x^4+60*x^3+42*x^2+39*x+38', 'y^2=55*x^6+32*x^5+59*x^4+70*x^3+40*x^2+63*x+28', 'y^2=44*x^6+39*x^5+32*x^4+4*x^3+35*x^2+13*x+20', 'y^2=19*x^6+35*x^5+34*x^4+8*x^3+76*x^2+56*x+70', 'y^2=46*x^6+69*x^5+10*x^4+53*x^3+59*x^2+61*x+5', 'y^2=11*x^6+64*x^5+43*x^4+4*x^2+14*x+38', 'y^2=41*x^6+58*x^5+32*x^4+59*x^3+11*x^2+66*x+83', 'y^2=84*x^6+40*x^5+84*x^4+44*x^3+32*x^2+73*x', 'y^2=9*x^6+60*x^5+9*x^4+30*x^3+14*x^2+42*x+74', 'y^2=7*x^6+59*x^5+8*x^4+86*x^3+31*x^2+26*x+1', 'y^2=54*x^6+86*x^5+36*x^4+54*x^3+27*x^2+37*x+75', 'y^2=87*x^6+65*x^5+43*x^4+58*x^3+22*x^2+6*x+35', 'y^2=7*x^6+69*x^5+37*x^4+29*x^3+53*x^2+49*x+56', 'y^2=48*x^6+24*x^5+52*x^4+39*x^3+9*x^2+75*x+68', 'y^2=58*x^6+12*x^5+34*x^4+82*x^3+65*x^2+14*x+11', 'y^2=41*x^6+80*x^5+22*x^4+34*x^3+19*x^2+43*x+1', 'y^2=43*x^6+68*x^5+24*x^4+42*x^3+51*x^2+62*x+57', 'y^2=21*x^6+7*x^5+27*x^4+85*x^3+38*x^2+18*x+38', 'y^2=66*x^6+8*x^5+63*x^4+87*x^3+10*x^2+15*x+83', 'y^2=56*x^5+46*x^4+21*x^3+76*x^2+38*x+1', 'y^2=27*x^6+6*x^5+88*x^4+84*x^3+35*x^2+35*x+28', 'y^2=40*x^6+83*x^5+3*x^4+64*x^3+32*x^2+76*x+44', 'y^2=39*x^6+78*x^5+52*x^4+14*x^3+9*x^2+53*x+60', 'y^2=65*x^6+37*x^5+53*x^4+85*x^3+29*x^2+32*x+65', 'y^2=59*x^6+72*x^5+38*x^4+46*x^3+22*x^2+18*x+56', 'y^2=59*x^6+62*x^5+58*x^4+14*x^3+70*x^2+62*x+28', 'y^2=14*x^6+19*x^5+60*x^4+56*x^3+27*x^2+29*x+62', 'y^2=68*x^6+43*x^5+26*x^4+52*x^3+3*x^2+41*x+43', 'y^2=64*x^6+73*x^5+83*x^4+7*x^3+87*x^2+19*x+52', 'y^2=5*x^6+58*x^5+86*x^4+77*x^3+62*x^2+33*x+47', 'y^2=77*x^6+83*x^5+70*x^4+57*x^3+19*x^2+24*x+63', 'y^2=43*x^6+69*x^5+33*x^4+49*x^3+81*x^2+61*x+50', 'y^2=11*x^6+59*x^5+7*x^4+76*x^3+2*x^2+17*x', 'y^2=6*x^6+88*x^5+83*x^4+15*x^3+86*x^2+44*x+1', 'y^2=45*x^6+3*x^4+39*x^3+62*x^2+13*x+75', 'y^2=5*x^6+77*x^5+60*x^4+82*x^3+61*x^2+16*x+31', 'y^2=28*x^6+68*x^5+16*x^4+30*x^3+38*x^2+32*x+44', 'y^2=24*x^6+7*x^5+81*x^4+35*x^3+4*x^2+32*x+39', 'y^2=62*x^6+78*x^5+49*x^4+77*x^3+70*x^2+25*x+23', 'y^2=21*x^6+81*x^5+67*x^4+54*x^3+74*x^2+25*x+75', 'y^2=27*x^6+71*x^5+71*x^4+39*x^3+x^2+51*x+79', 'y^2=70*x^6+30*x^5+50*x^4+x^3+81*x^2+23*x+74', 'y^2=40*x^6+47*x^5+28*x^4+31*x^2+38*x+44', 'y^2=81*x^6+69*x^5+66*x^4+48*x^3+31*x^2+36*x+63', 'y^2=9*x^6+9*x^5+87*x^4+85*x^3+25*x^2+85*x+82', 'y^2=69*x^6+44*x^5+45*x^4+9*x^3+32*x^2+81*x+17', 'y^2=65*x^6+6*x^5+82*x^4+47*x^3+69*x^2+43*x+36', 'y^2=50*x^6+14*x^5+35*x^4+20*x^3+72*x^2+66*x+46', 'y^2=76*x^6+11*x^5+88*x^4+32*x^3+83*x^2+18*x+87', 'y^2=74*x^5+48*x^4+3*x^3+40*x^2+60*x+64', 'y^2=56*x^6+69*x^5+11*x^4+64*x^3+42*x^2+69*x+48', 'y^2=67*x^6+13*x^4+64*x^3+75*x^2+x+32', 'y^2=52*x^6+81*x^5+34*x^4+36*x^3+79*x^2+4*x+70', 'y^2=21*x^6+80*x^5+33*x^4+18*x^3+88*x^2+25*x+45', 'y^2=65*x^6+49*x^5+17*x^4+52*x^3+51*x^2+11*x+9', 'y^2=33*x^6+8*x^4+25*x^3+58*x^2+42*x+79', 'y^2=45*x^6+53*x^5+81*x^4+26*x^3+2*x^2+71*x+22', 'y^2=84*x^6+26*x^5+65*x^4+50*x^3+9*x^2+78*x+7', 'y^2=32*x^6+48*x^5+38*x^4+85*x^3+72*x^2+6*x+4', 'y^2=65*x^6+56*x^5+35*x^4+17*x^3+21*x^2+19*x+77', 'y^2=28*x^6+42*x^4+11*x^3+8*x^2+12*x+38', 'y^2=83*x^6+64*x^5+63*x^4+17*x^3+43*x^2+36*x+35', 'y^2=64*x^6+75*x^5+38*x^4+32*x^3+57*x^2+8*x+31', 'y^2=x^6+63*x^5+39*x^4+37*x^3+24*x^2+82*x+48', 'y^2=69*x^5+x^4+29*x^3+69*x^2+47*x+82', 'y^2=88*x^6+31*x^5+6*x^4+79*x^3+64*x^2+68*x+6', 'y^2=54*x^6+34*x^5+69*x^4+30*x^3+85*x^2+10*x+74', 'y^2=45*x^6+74*x^5+85*x^4+61*x^3+49*x^2+71*x+29', 'y^2=53*x^6+69*x^5+2*x^4+39*x^3+59*x^2+17*x+87', 'y^2=31*x^6+57*x^5+21*x^4+81*x^3+79*x^2+59*x+59', 'y^2=56*x^6+76*x^5+43*x^4+31*x^3+62*x^2+12*x+43', 'y^2=4*x^6+17*x^5+20*x^4+54*x^3+7*x^2+80*x+46', 'y^2=22*x^6+39*x^5+18*x^4+24*x^3+45*x^2+41*x+59', 'y^2=x^6+63*x^5+49*x^4+14*x^3+80*x^2+24*x+32', 'y^2=77*x^6+71*x^5+61*x^4+81*x^3+86*x^2+24*x+39', 'y^2=61*x^6+62*x^5+2*x^4+13*x^3+21*x^2+54*x+80', 'y^2=75*x^6+54*x^5+37*x^4+x^3+19*x^2+5*x+23', 'y^2=84*x^6+11*x^5+44*x^4+52*x^3+79*x^2+81*x+34', 'y^2=88*x^6+10*x^5+54*x^4+51*x^3+86*x^2+78*x+77', 'y^2=3*x^6+46*x^5+87*x^4+60*x^3+16*x^2+66*x+51', 'y^2=28*x^6+9*x^5+84*x^4+73*x^3+7*x^2+2*x+7', 'y^2=9*x^6+85*x^5+85*x^4+41*x^3+58*x^2+29*x+62', 'y^2=15*x^6+82*x^5+19*x^4+36*x^3+9*x^2+60*x+9', 'y^2=87*x^6+11*x^5+67*x^4+85*x^2+6*x+60', 'y^2=46*x^6+54*x^5+76*x^4+67*x^3+63*x^2+7*x+55', 'y^2=54*x^6+73*x^5+75*x^4+52*x^3+27*x^2+6*x+7', 'y^2=51*x^6+8*x^5+87*x^4+67*x^3+71*x^2+38*x+45', 'y^2=13*x^6+36*x^4+68*x^3+24*x^2+24*x+40', 'y^2=24*x^6+2*x^5+36*x^4+66*x^3+43*x^2+57*x+66', 'y^2=71*x^6+77*x^5+8*x^4+61*x^3+42*x^2+36*x+76', 'y^2=54*x^6+64*x^5+9*x^4+50*x^3+27*x^2+28*x+31', 'y^2=77*x^6+38*x^5+12*x^4+22*x^3+43*x^2+49*x+52', 'y^2=47*x^6+77*x^5+85*x^4+75*x^3+20*x^2+54*x+88', 'y^2=64*x^6+50*x^5+65*x^4+45*x^3+55*x^2+8*x+44', 'y^2=58*x^6+17*x^5+44*x^4+41*x^3+35*x^2+72*x+68', 'y^2=82*x^6+56*x^5+37*x^4+10*x^3+84*x^2+75', 'y^2=21*x^6+48*x^4+85*x^3+86*x^2+23*x+86', 'y^2=16*x^6+48*x^5+30*x^4+28*x^3+6*x^2+18*x+83', 'y^2=21*x^6+29*x^5+16*x^4+85*x^3+59*x+50', 'y^2=7*x^6+46*x^4+27*x^3+65*x^2+66*x+21', 'y^2=84*x^6+70*x^5+26*x^4+43*x^3+23*x^2+37*x+38', 'y^2=41*x^6+x^5+57*x^4+14*x^3+59*x^2+80*x+46', 'y^2=73*x^6+58*x^5+72*x^4+78*x^3+52*x^2+44*x+7', 'y^2=7*x^6+82*x^5+7*x^4+27*x^3+57*x^2+44*x+10', 'y^2=26*x^6+67*x^5+46*x^4+21*x^3+53*x^2+33*x+48', 'y^2=44*x^6+81*x^5+47*x^4+54*x^3+17*x^2+20*x+13', 'y^2=60*x^6+6*x^5+35*x^4+20*x^3+56*x^2+57*x+6', 'y^2=19*x^6+25*x^5+60*x^4+19*x^3+6*x^2+24*x+11', 'y^2=3*x^6+19*x^5+65*x^4+33*x^3+21*x^2+17*x+28', 'y^2=6*x^6+72*x^5+15*x^4+51*x^3+6*x^2+18*x+41', 'y^2=4*x^6+55*x^5+87*x^4+49*x^3+31*x^2+66*x+30', 'y^2=50*x^6+23*x^5+45*x^4+72*x^3+55*x^2+86*x+14', 'y^2=46*x^6+75*x^5+66*x^4+82*x^3+66*x^2+59*x+88', 'y^2=30*x^6+81*x^5+69*x^4+4*x^3+70*x^2+17*x+26', 'y^2=46*x^6+76*x^5+37*x^4+75*x^3+25*x^2+45*x+27', 'y^2=66*x^6+32*x^5+58*x^4+69*x^3+38*x^2+30*x+60', 'y^2=3*x^6+53*x^5+55*x^4+43*x^3+46*x^2+52*x+28', 'y^2=80*x^6+x^5+35*x^4+29*x^3+71*x^2+62*x+4', 'y^2=6*x^6+33*x^5+55*x^4+59*x^3+73*x^2+67*x+16', 'y^2=26*x^6+58*x^5+61*x^4+56*x^3+17*x^2+15*x+33', 'y^2=45*x^6+77*x^5+6*x^4+74*x^3+18*x^2+31*x+58', 'y^2=51*x^6+51*x^5+21*x^4+63*x^3+84*x^2+86*x+37', 'y^2=84*x^6+36*x^5+49*x^4+79*x^3+3*x^2+41*x+36', 'y^2=51*x^6+47*x^5+73*x^4+26*x^3+26*x^2+64*x+20', 'y^2=63*x^6+82*x^5+28*x^4+77*x^3+15*x^2+57*x+9', 'y^2=65*x^6+84*x^5+43*x^4+68*x^3+51*x^2+14*x+3', 'y^2=78*x^6+45*x^5+17*x^4+33*x^3+7*x^2+2*x+14', 'y^2=14*x^6+4*x^5+25*x^3+21*x^2+76*x+63', 'y^2=26*x^6+80*x^5+3*x^4+53*x^3+81*x^2+41*x+44', 'y^2=6*x^6+39*x^5+8*x^4+26*x^3+70*x^2+56*x+59', 'y^2=38*x^6+29*x^5+40*x^4+5*x^3+43*x^2+45*x+11', 'y^2=32*x^6+23*x^5+41*x^4+6*x^3+x^2+18*x+2', 'y^2=4*x^6+41*x^5+43*x^4+13*x^3+36*x^2+56*x+38', 'y^2=84*x^6+28*x^5+68*x^4+3*x^3+43*x^2+83*x+53', 'y^2=79*x^6+18*x^5+55*x^4+41*x^3+23*x^2+42*x+4', 'y^2=83*x^6+10*x^5+28*x^4+85*x^3+49*x^2+80*x+23', 'y^2=x^6+8*x^5+73*x^4+3*x^3+46*x^2+74', 'y^2=16*x^6+34*x^5+64*x^4+88*x^3+42*x^2+54*x+69', 'y^2=26*x^6+7*x^5+53*x^4+45*x^3+21*x^2+11*x+71', 'y^2=24*x^6+29*x^5+75*x^4+81*x^3+33*x^2+79*x+55', 'y^2=30*x^6+21*x^5+5*x^4+58*x^3+19*x^2+29*x+78', 'y^2=73*x^6+37*x^5+8*x^4+26*x^3+39*x^2+59*x+8', 'y^2=9*x^6+45*x^5+57*x^4+72*x^3+17*x^2+13*x+77', 'y^2=85*x^6+60*x^5+83*x^4+76*x^3+75*x^2+80*x+85', 'y^2=54*x^6+20*x^5+27*x^4+76*x^3+58*x^2+28*x+45', 'y^2=26*x^6+81*x^5+56*x^4+82*x^3+53*x^2+29*x+51', 'y^2=5*x^6+22*x^5+23*x^4+46*x^3+70*x^2+27*x+12', 'y^2=17*x^5+78*x^4+81*x^3+14*x^2+61*x+43', 'y^2=82*x^6+86*x^5+51*x^4+40*x^3+4*x^2+31*x+64', 'y^2=24*x^6+25*x^5+66*x^4+42*x^3+78*x^2+17*x', 'y^2=23*x^6+10*x^5+76*x^4+88*x^3+3*x^2+39*x+37', 'y^2=40*x^6+5*x^5+13*x^4+31*x^3+36*x^2+51*x+62', 'y^2=72*x^6+46*x^5+78*x^4+67*x^3+6*x^2+53*x+44', 'y^2=50*x^6+9*x^5+24*x^4+80*x^3+53*x^2+42*x+7', 'y^2=64*x^6+31*x^5+53*x^3+57*x^2+82*x+81', 'y^2=30*x^6+14*x^5+25*x^4+20*x^3+87*x^2+43*x+50', 'y^2=62*x^6+49*x^5+70*x^4+61*x^3+64*x^2+23*x+66', 'y^2=5*x^6+44*x^5+47*x^4+56*x^3+53*x^2+49*x+5', 'y^2=71*x^6+76*x^5+12*x^4+43*x^3+x^2+58*x+69', 'y^2=6*x^6+68*x^5+81*x^4+41*x^3+64*x^2+86*x+5', 'y^2=83*x^6+85*x^5+83*x^4+21*x^3+52*x^2+77*x+86', 'y^2=30*x^6+70*x^5+17*x^4+3*x^3+21*x^2+7*x+78', 'y^2=18*x^6+23*x^5+52*x^4+50*x^3+86*x^2+87*x+11', 'y^2=4*x^6+78*x^5+67*x^4+3*x^3+9*x+15', 'y^2=28*x^6+75*x^5+31*x^4+50*x^3+48*x^2+49*x+36', 'y^2=72*x^6+56*x^5+10*x^4+61*x^3+20*x^2+63*x+31', 'y^2=64*x^6+24*x^5+8*x^4+11*x^3+16*x^2+82*x+69', 'y^2=50*x^6+11*x^5+13*x^4+11*x^3+2*x^2+45*x+16', 'y^2=79*x^6+44*x^5+24*x^4+64*x^3+43*x^2+19*x+86', 'y^2=67*x^6+9*x^5+79*x^4+51*x^3+27*x^2+41*x+65', 'y^2=62*x^6+24*x^5+84*x^4+7*x^3+65*x^2+18*x+66', 'y^2=42*x^6+44*x^5+44*x^4+74*x^3+31*x^2+68*x+10', 'y^2=58*x^6+24*x^5+36*x^4+69*x^3+23*x^2+79*x+19', 'y^2=83*x^6+34*x^5+11*x^4+10*x^3+34*x^2+88*x+7', 'y^2=11*x^6+78*x^5+21*x^4+36*x^3+27*x^2+26*x+21', 'y^2=58*x^6+22*x^5+52*x^4+63*x^3+82*x^2+72*x+9', 'y^2=62*x^6+25*x^5+67*x^4+30*x^3+32*x^2+49*x+41', 'y^2=54*x^6+6*x^5+45*x^4+69*x^3+52*x^2+8*x+75', 'y^2=24*x^6+54*x^5+85*x^4+2*x^3+69*x^2+67*x+71', 'y^2=62*x^6+16*x^5+37*x^4+22*x^3+62*x^2+79*x+74', 'y^2=55*x^6+88*x^4+83*x^3+6*x^2+75*x+22', 'y^2=16*x^6+55*x^5+82*x^4+32*x^3+32*x^2+82*x+60', 'y^2=26*x^6+9*x^5+46*x^4+28*x^3+76*x^2+12*x+58', 'y^2=34*x^6+12*x^5+17*x^4+76*x^3+61*x^2+3*x+30', 'y^2=58*x^6+50*x^5+15*x^4+20*x^3+58*x^2+25*x+88', 'y^2=3*x^6+57*x^5+70*x^4+88*x^3+14*x^2+37*x+41', 'y^2=60*x^6+8*x^5+51*x^4+81*x^2+45*x+12', 'y^2=22*x^6+29*x^5+47*x^4+26*x^3+16*x^2+x+86', 'y^2=81*x^6+37*x^5+61*x^4+12*x^3+42*x^2+27*x+60', 'y^2=56*x^6+10*x^5+62*x^4+42*x^3+61*x^2+3*x+41'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 3, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.16870256.1'], 'geometric_splitting_field': '4.0.16870256.1', 'geometric_splitting_polynomials': [[6239, 0, 159, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 192, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 192, 'label': '2.89.ak_hi', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.16870256.1'], 'p': 89, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 16], [1, 17, 1, 2], [1, 23, 2, 32]], 'poly': [1, -10, 190, -890, 7921], 'poly_str': '1 -10 190 -890 7921 ', 'primitive_models': [], 'principal_polarization_count': 192, 'q': 89, 'real_poly': [1, -10, 12], 'simple_distinct': ['2.89.ak_hi'], 'simple_factors': ['2.89.ak_hiA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-F^2+F+2'], 'size': 256, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.16870256.1', 'splitting_polynomials': [[6239, 0, 159, 0, 1]], 'twist_count': 2, 'twists': [['2.89.k_hi', '2.7921.ku_byne', 2]], 'weak_equivalence_count': 3, 'zfv_index': 4, 'zfv_index_factorization': [[2, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 128, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 99824, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,-F^2+F+2']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.89.ak_hi', 'extension_degree': 1, 'extension_label': '2.89.ak_hi', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.16870256.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.89.ak_hi', 'galois_group': '4T3', 'places': [['86', '5', '88', '0'], ['3', '5', '1', '0']]}