| L(s) = 1 | − 3-s + 2·7-s + 9-s + 4·19-s − 2·21-s − 2·25-s − 27-s − 6·29-s − 4·31-s − 4·37-s + 12·47-s − 3·49-s + 18·53-s − 4·57-s + 12·59-s + 2·63-s + 2·75-s + 81-s + 6·87-s + 4·93-s − 4·103-s − 8·109-s + 4·111-s + 18·113-s − 14·121-s + 127-s + 131-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 0.755·7-s + 1/3·9-s + 0.917·19-s − 0.436·21-s − 2/5·25-s − 0.192·27-s − 1.11·29-s − 0.718·31-s − 0.657·37-s + 1.75·47-s − 3/7·49-s + 2.47·53-s − 0.529·57-s + 1.56·59-s + 0.251·63-s + 0.230·75-s + 1/9·81-s + 0.643·87-s + 0.414·93-s − 0.394·103-s − 0.766·109-s + 0.379·111-s + 1.69·113-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.554079449\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.554079449\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.736272632803903616725633192144, −8.332754815606835761720677805692, −7.71152294031967869430758183216, −7.24403310731652543940071539382, −7.12253836713531318680101133231, −6.37177674532174965327631059228, −5.69899050063550625067626704490, −5.42303130011221349690163040251, −5.11547796071614781021147659422, −4.22719552159999341516393785478, −3.95306624174800925731894929604, −3.24409401169593907858360144011, −2.33153868590346268044462857856, −1.73210144303801819716232502409, −0.76185106146870641907496167592,
0.76185106146870641907496167592, 1.73210144303801819716232502409, 2.33153868590346268044462857856, 3.24409401169593907858360144011, 3.95306624174800925731894929604, 4.22719552159999341516393785478, 5.11547796071614781021147659422, 5.42303130011221349690163040251, 5.69899050063550625067626704490, 6.37177674532174965327631059228, 7.12253836713531318680101133231, 7.24403310731652543940071539382, 7.71152294031967869430758183216, 8.332754815606835761720677805692, 8.736272632803903616725633192144