Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 53 x^{2} )( 1 - 6 x + 53 x^{2} )$ |
| $1 - 18 x + 178 x^{2} - 954 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.191645762723$, $\pm0.364801829573$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $136$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2016$ | $7983360$ | $22301461728$ | $62298309427200$ | $174889871069116896$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $2842$ | $149796$ | $7895374$ | $418201236$ | $22164379594$ | $1174712538420$ | $62259704035486$ | $3299763589574148$ | $174887469182697082$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 136 curves (of which all are hyperelliptic):
- $y^2=43 x^6+4 x^5+27 x^4+48 x^3+27 x^2+4 x+43$
- $y^2=10 x^6+25 x^5+12 x^4+27 x^3+15 x^2+17 x+21$
- $y^2=52 x^6+50 x^5+27 x^4+5 x^3+50 x^2+35 x+34$
- $y^2=12 x^6+31 x^5+41 x^4+22 x^3+37 x^2+47 x+20$
- $y^2=33 x^6+46 x^5+15 x^4+50 x^3+28 x^2+47 x+46$
- $y^2=10 x^6+43 x^5+37 x^4+37 x^3+37 x^2+43 x+10$
- $y^2=34 x^6+26 x^5+33 x^4+40 x^3+x^2+20 x+3$
- $y^2=46 x^6+52 x^4+37 x^3+17 x^2+22 x+21$
- $y^2=20 x^6+11 x^5+44 x^4+5 x^3+27 x^2+29 x+33$
- $y^2=12 x^6+46 x^5+5 x^4+50 x^3+35 x^2+31 x+25$
- $y^2=51 x^6+17 x^5+14 x^4+2 x^3+4 x^2+3 x+32$
- $y^2=32 x^6+9 x^5+35 x^4+47 x^3+13 x^2+3 x+46$
- $y^2=27 x^6+51 x^5+16 x^4+6 x^3+37 x^2+51 x+26$
- $y^2=20 x^6+35 x^5+25 x^4+33 x^3+25 x^2+35 x+20$
- $y^2=24 x^6+32 x^5+13 x^4+29 x^3+24 x+18$
- $y^2=14 x^6+26 x^5+29 x^4+6 x^3+38 x^2+39 x+29$
- $y^2=12 x^6+30 x^5+35 x^4+48 x^3+35 x^2+30 x+12$
- $y^2=48 x^6+3 x^5+46 x^4+35 x^3+35 x^2+51 x+50$
- $y^2=4 x^6+15 x^5+18 x^4+37 x^3+26 x^2+13 x+20$
- $y^2=22 x^6+44 x^5+35 x^4+38 x^3+35 x^2+44 x+22$
- and 116 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.am $\times$ 1.53.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.ag_bi | $2$ | (not in LMFDB) |
| 2.53.g_bi | $2$ | (not in LMFDB) |
| 2.53.s_gw | $2$ | (not in LMFDB) |