| L(s) = 1 | − 3·5-s + 4·7-s + 3·11-s − 5·13-s + 3·17-s + 5·19-s + 3·23-s + 5·25-s − 3·29-s + 8·31-s − 12·35-s + 7·37-s − 9·41-s + 11·43-s + 9·49-s − 3·53-s − 9·55-s + 24·59-s + 4·61-s + 15·65-s + 8·67-s − 11·73-s + 12·77-s − 16·79-s − 3·83-s − 9·85-s + 15·89-s + ⋯ |
| L(s) = 1 | − 1.34·5-s + 1.51·7-s + 0.904·11-s − 1.38·13-s + 0.727·17-s + 1.14·19-s + 0.625·23-s + 25-s − 0.557·29-s + 1.43·31-s − 2.02·35-s + 1.15·37-s − 1.40·41-s + 1.67·43-s + 9/7·49-s − 0.412·53-s − 1.21·55-s + 3.12·59-s + 0.512·61-s + 1.86·65-s + 0.977·67-s − 1.28·73-s + 1.36·77-s − 1.80·79-s − 0.329·83-s − 0.976·85-s + 1.58·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.189497559\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.189497559\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.691703799719210854682480510376, −8.560354481034445039471003182280, −8.042413110337622028823033812340, −7.84063556711123871832434234637, −7.35960431667286084510556057920, −7.22049715118263417289468008044, −6.92477729801594174902433456730, −6.31173873539867523202513171634, −5.65101826124369984931919018617, −5.48079937631410340763345740791, −4.88645056213009144906849478884, −4.67639345506329846383875361261, −4.22249335869452173749016267614, −3.95255198246004845921944366070, −3.22912804504060757296101278912, −3.02740724669832917063151796102, −2.27675496325682002985285286244, −1.81911240424870450360908710073, −0.872358056979913534653660343269, −0.806487909841070155741251105632,
0.806487909841070155741251105632, 0.872358056979913534653660343269, 1.81911240424870450360908710073, 2.27675496325682002985285286244, 3.02740724669832917063151796102, 3.22912804504060757296101278912, 3.95255198246004845921944366070, 4.22249335869452173749016267614, 4.67639345506329846383875361261, 4.88645056213009144906849478884, 5.48079937631410340763345740791, 5.65101826124369984931919018617, 6.31173873539867523202513171634, 6.92477729801594174902433456730, 7.22049715118263417289468008044, 7.35960431667286084510556057920, 7.84063556711123871832434234637, 8.042413110337622028823033812340, 8.560354481034445039471003182280, 8.691703799719210854682480510376