L(s) = 1 | + 2·5-s − 7-s + 10·11-s + 5·13-s + 3·17-s + 19-s + 6·23-s − 7·25-s − 29-s − 2·35-s − 3·37-s − 5·41-s − 43-s − 6·49-s − 9·53-s + 20·55-s + 14·61-s + 10·65-s + 4·67-s − 24·71-s − 3·73-s − 10·77-s + 8·79-s + 9·83-s + 6·85-s − 13·89-s − 5·91-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.377·7-s + 3.01·11-s + 1.38·13-s + 0.727·17-s + 0.229·19-s + 1.25·23-s − 7/5·25-s − 0.185·29-s − 0.338·35-s − 0.493·37-s − 0.780·41-s − 0.152·43-s − 6/7·49-s − 1.23·53-s + 2.69·55-s + 1.79·61-s + 1.24·65-s + 0.488·67-s − 2.84·71-s − 0.351·73-s − 1.13·77-s + 0.900·79-s + 0.987·83-s + 0.650·85-s − 1.37·89-s − 0.524·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.737056573\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.737056573\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.918859199082795871664423579115, −8.590365134835161143553989353765, −8.425163263598372378745090757181, −7.76057726296778194354212145552, −7.20565101034538640035239167109, −7.05660037043037595485967649950, −6.43329638643278680683277426974, −6.29469650194635748009625564840, −6.03455711531137230132642479084, −5.64511206914246562437083731446, −5.10379997024218611505379625004, −4.61654783257123460182079070834, −4.07095224527922946114653834858, −3.71871859503084967345472126804, −3.36813166160613424294643481135, −3.10973874956882399641923347473, −2.09543035483855014377640214733, −1.62170973194198831953417429904, −1.37727501355599320080280072529, −0.74279662652149815704298699566,
0.74279662652149815704298699566, 1.37727501355599320080280072529, 1.62170973194198831953417429904, 2.09543035483855014377640214733, 3.10973874956882399641923347473, 3.36813166160613424294643481135, 3.71871859503084967345472126804, 4.07095224527922946114653834858, 4.61654783257123460182079070834, 5.10379997024218611505379625004, 5.64511206914246562437083731446, 6.03455711531137230132642479084, 6.29469650194635748009625564840, 6.43329638643278680683277426974, 7.05660037043037595485967649950, 7.20565101034538640035239167109, 7.76057726296778194354212145552, 8.425163263598372378745090757181, 8.590365134835161143553989353765, 8.918859199082795871664423579115