Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 3 x - 64 x^{2} + 219 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.222840824640$, $\pm0.889507491307$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-283})\) |
Galois group: | $C_2^2$ |
Jacobians: | $63$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5488$ | $27681472$ | $151825563904$ | $806690467425024$ | $4297771617189515248$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $77$ | $5193$ | $390278$ | $28406353$ | $2073141917$ | $151334988558$ | $11047392242117$ | $806460100885921$ | $58871585737877654$ | $4297625830502738793$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 63 curves (of which all are hyperelliptic):
- $y^2=29 x^6+41 x^5+71 x^4+31 x^3+28 x^2+43 x+68$
- $y^2=42 x^6+35 x^5+46 x^4+55 x^3+49 x^2+61 x+34$
- $y^2=40 x^6+72 x^5+25 x^4+15 x^3+26 x^2+13 x+6$
- $y^2=31 x^6+23 x^5+56 x^4+46 x^3+63 x^2+38 x+28$
- $y^2=6 x^6+41 x^5+22 x^4+x^3+20 x^2+66 x+14$
- $y^2=4 x^6+10 x^5+11 x^4+25 x^3+36 x^2+70 x+24$
- $y^2=32 x^6+22 x^5+38 x^4+3 x^3+19 x^2+15 x+65$
- $y^2=48 x^5+48 x^4+48 x^3+42 x^2+9 x+2$
- $y^2=10 x^6+29 x^5+x^4+21 x^3+4 x^2+10 x+7$
- $y^2=2 x^6+64 x^5+25 x^4+41 x^3+28 x^2+67 x+64$
- $y^2=61 x^6+52 x^5+16 x^4+57 x^3+27 x^2+18 x+30$
- $y^2=3 x^6+64 x^5+37 x^4+41 x^3+49 x^2+29 x+25$
- $y^2=25 x^6+27 x^5+17 x^4+30 x^3+24 x^2+31 x+56$
- $y^2=48 x^6+34 x^5+65 x^3+4 x^2+22 x+28$
- $y^2=65 x^6+52 x^5+69 x^4+58 x^3+10 x^2+35$
- $y^2=58 x^6+47 x^5+72 x^4+22 x^3+46 x^2+23 x+29$
- $y^2=41 x^6+6 x^5+11 x^4+71 x^3+30 x^2+68 x+36$
- $y^2=18 x^6+7 x^5+62 x^4+2 x^3+25 x^2+28 x+47$
- $y^2=59 x^6+28 x^5+45 x^4+9 x^2+9 x+13$
- $y^2=24 x^6+36 x^5+24 x^4+61 x^3+6 x^2+52 x+4$
- and 43 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{3}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-283})\). |
The base change of $A$ to $\F_{73^{3}}$ is 1.389017.yg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-283}) \)$)$ |
Base change
This is a primitive isogeny class.