Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 9 x - 16 x^{2} - 873 x^{3} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.0156243205644$, $\pm0.682290987231$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-307})\) |
Galois group: | $C_2^2$ |
Jacobians: | $15$ |
Isomorphism classes: | 27 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8512$ | $87469312$ | $829527494656$ | $7836898028811264$ | $73741305883819346752$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $9297$ | $908894$ | $88523233$ | $8587211369$ | $832968511422$ | $80798281259561$ | $7837433453908801$ | $760231055501739038$ | $73742412688930519857$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):
- $y^2=10 x^6+14 x^5+36 x^4+92 x^3+32 x^2+38 x+12$
- $y^2=24 x^6+57 x^5+13 x^4+63 x^3+30 x^2+94 x+51$
- $y^2=72 x^5+59 x^4+71 x^3+8 x^2+72 x+20$
- $y^2=56 x^5+37 x^4+69 x^3+9 x^2+41 x$
- $y^2=83 x^6+91 x^5+65 x^4+33 x^3+9 x^2+16 x+7$
- $y^2=41 x^6+3 x^5+83 x^4+69 x^3+26 x^2+38 x+24$
- $y^2=54 x^6+4 x^5+96 x^4+10 x^3+71 x^2+4 x+24$
- $y^2=94 x^6+15 x^5+15 x^4+23 x^3+14 x^2+45 x+16$
- $y^2=27 x^6+39 x^5+65 x^4+71 x^3+89 x^2+23 x+32$
- $y^2=57 x^6+9 x^5+73 x^4+4 x^3+51 x^2+87 x+37$
- $y^2=21 x^6+85 x^5+70 x^4+23 x^3+23 x^2+29 x+10$
- $y^2=71 x^6+10 x^5+94 x^4+90 x^3+18 x^2+68 x+60$
- $y^2=90 x^6+11 x^5+52 x^4+59 x^3+66 x^2+12 x+69$
- $y^2=7 x^6+57 x^5+89 x^4+86 x^3+86 x^2+12 x+56$
- $y^2=20 x^6+69 x^5+17 x^4+58 x^3+31 x^2+14 x+94$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{3}}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-307})\). |
The base change of $A$ to $\F_{97^{3}}$ is 1.912673.acus 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-307}) \)$)$ |
Base change
This is a primitive isogeny class.