L(s) = 1 | − 7-s + 16·19-s + 7·25-s − 12·29-s − 10·31-s + 8·37-s + 12·47-s − 6·49-s − 6·53-s + 24·59-s + 30·83-s + 32·103-s + 40·109-s − 24·113-s − 5·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 14·169-s + 173-s + ⋯ |
L(s) = 1 | − 0.377·7-s + 3.67·19-s + 7/5·25-s − 2.22·29-s − 1.79·31-s + 1.31·37-s + 1.75·47-s − 6/7·49-s − 0.824·53-s + 3.12·59-s + 3.29·83-s + 3.15·103-s + 3.83·109-s − 2.25·113-s − 0.454·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.07·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.141486335\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.141486335\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.947360113500873729447056366871, −8.834815641402780658271814583611, −7.916329038464943567327567595441, −7.70619756058522834138633991996, −7.37524741406079458456087945294, −7.25180959101029417179268977189, −6.75254699102914385100327303135, −6.18465256321573065873237736592, −5.80704962570355589096398723037, −5.41297759994517055010377640641, −5.11983744997274675325587775264, −4.89211396848668252674936444772, −4.02076114841670281127736337429, −3.71909456423703670078772308042, −3.23581104950657391667893110928, −3.10092649111417880249869311003, −2.27098717715432984836517366330, −1.87391491904726699300006483400, −0.976999593662215870090168729665, −0.70535290475981124489117592454,
0.70535290475981124489117592454, 0.976999593662215870090168729665, 1.87391491904726699300006483400, 2.27098717715432984836517366330, 3.10092649111417880249869311003, 3.23581104950657391667893110928, 3.71909456423703670078772308042, 4.02076114841670281127736337429, 4.89211396848668252674936444772, 5.11983744997274675325587775264, 5.41297759994517055010377640641, 5.80704962570355589096398723037, 6.18465256321573065873237736592, 6.75254699102914385100327303135, 7.25180959101029417179268977189, 7.37524741406079458456087945294, 7.70619756058522834138633991996, 7.916329038464943567327567595441, 8.834815641402780658271814583611, 8.947360113500873729447056366871