| L(s) = 1 | + 4·7-s − 4·19-s + 7·25-s + 12·29-s − 20·31-s − 22·37-s + 18·47-s + 9·49-s − 24·53-s + 6·59-s + 30·83-s − 8·103-s + 10·109-s − 36·113-s + 10·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 14·169-s + 173-s + ⋯ |
| L(s) = 1 | + 1.51·7-s − 0.917·19-s + 7/5·25-s + 2.22·29-s − 3.59·31-s − 3.61·37-s + 2.62·47-s + 9/7·49-s − 3.29·53-s + 0.781·59-s + 3.29·83-s − 0.788·103-s + 0.957·109-s − 3.38·113-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.07·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.462813678\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.462813678\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.872622283220259127185845127535, −8.684465308900046124477111975093, −8.131851315225435693770630618465, −7.72338518505025587316238289617, −7.62112508302919210895397950862, −6.92112389974738081050197346690, −6.61181337334973260989875117741, −6.58768498218918007471176386339, −5.57312619810038405231423009757, −5.42207609828340050113608614520, −5.15556415856095759135825336559, −4.65362491375754674485683089362, −4.32635082558230335095869552433, −3.78689889525344726823307404797, −3.34211146395643793259553752300, −2.88612970688943832530762588226, −2.05829192424773217696333797947, −1.88721971139079786726223374655, −1.34982146150484582549255033383, −0.49525080591955792677957552443,
0.49525080591955792677957552443, 1.34982146150484582549255033383, 1.88721971139079786726223374655, 2.05829192424773217696333797947, 2.88612970688943832530762588226, 3.34211146395643793259553752300, 3.78689889525344726823307404797, 4.32635082558230335095869552433, 4.65362491375754674485683089362, 5.15556415856095759135825336559, 5.42207609828340050113608614520, 5.57312619810038405231423009757, 6.58768498218918007471176386339, 6.61181337334973260989875117741, 6.92112389974738081050197346690, 7.62112508302919210895397950862, 7.72338518505025587316238289617, 8.131851315225435693770630618465, 8.684465308900046124477111975093, 8.872622283220259127185845127535