| L(s) = 1 | − 2-s + 4·5-s + 8-s − 4·10-s − 2·11-s − 6·13-s − 16-s + 5·17-s − 7·19-s + 2·22-s − 8·23-s + 2·25-s + 6·26-s − 4·29-s − 6·31-s − 5·34-s − 2·37-s + 7·38-s + 4·40-s − 3·41-s + 43-s + 8·46-s − 2·50-s + 12·53-s − 8·55-s + 4·58-s + 7·59-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1.78·5-s + 0.353·8-s − 1.26·10-s − 0.603·11-s − 1.66·13-s − 1/4·16-s + 1.21·17-s − 1.60·19-s + 0.426·22-s − 1.66·23-s + 2/5·25-s + 1.17·26-s − 0.742·29-s − 1.07·31-s − 0.857·34-s − 0.328·37-s + 1.13·38-s + 0.632·40-s − 0.468·41-s + 0.152·43-s + 1.17·46-s − 0.282·50-s + 1.64·53-s − 1.07·55-s + 0.525·58-s + 0.911·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.4089761858\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4089761858\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.217637976670619819793185243771, −8.810661984264330921149051843940, −8.168340322679005512462088057496, −7.937426045493439712861710692592, −7.76311535284028798622245006652, −7.13271091214475350525134201749, −6.80253076925883842234073445890, −6.43617715905182165911512521095, −5.68649778031052664928837546195, −5.66489699492468480610430555085, −5.43887385743767058580437677234, −4.88188944588736879478920717869, −4.11382886085275281724842610614, −4.09074320107573478716896028619, −3.25544249892602445848897696443, −2.55245853285665093412408415442, −2.23955877835577022395845030529, −1.88657746326511693864336009756, −1.43636455557231033643852398841, −0.21945234658843250227167295579,
0.21945234658843250227167295579, 1.43636455557231033643852398841, 1.88657746326511693864336009756, 2.23955877835577022395845030529, 2.55245853285665093412408415442, 3.25544249892602445848897696443, 4.09074320107573478716896028619, 4.11382886085275281724842610614, 4.88188944588736879478920717869, 5.43887385743767058580437677234, 5.66489699492468480610430555085, 5.68649778031052664928837546195, 6.43617715905182165911512521095, 6.80253076925883842234073445890, 7.13271091214475350525134201749, 7.76311535284028798622245006652, 7.937426045493439712861710692592, 8.168340322679005512462088057496, 8.810661984264330921149051843940, 9.217637976670619819793185243771