L(s) = 1 | + 4·11-s + 8·13-s + 12·23-s + 2·25-s + 4·37-s + 4·47-s + 10·49-s − 16·59-s − 4·61-s − 4·71-s − 4·73-s − 28·83-s + 4·97-s − 8·107-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 32·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + ⋯ |
L(s) = 1 | + 1.20·11-s + 2.21·13-s + 2.50·23-s + 2/5·25-s + 0.657·37-s + 0.583·47-s + 10/7·49-s − 2.08·59-s − 0.512·61-s − 0.474·71-s − 0.468·73-s − 3.07·83-s + 0.406·97-s − 0.773·107-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.67·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.487247569\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.487247569\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.849992037896896618448988127874, −8.516429707022264165941143619278, −7.85915389556093308374638347098, −7.28041937899198388112679911274, −6.84336689814190172896956344878, −6.48589505307606971197543984812, −5.83364779378410718614120511305, −5.67615307631966384647483489302, −4.73826545171632262024239382998, −4.34790186495541683284184782024, −3.73593660003712570123542581756, −3.23050813707198963747749368953, −2.65787015489133012574937680489, −1.35142392900134993828670961759, −1.15646370652108519773326923121,
1.15646370652108519773326923121, 1.35142392900134993828670961759, 2.65787015489133012574937680489, 3.23050813707198963747749368953, 3.73593660003712570123542581756, 4.34790186495541683284184782024, 4.73826545171632262024239382998, 5.67615307631966384647483489302, 5.83364779378410718614120511305, 6.48589505307606971197543984812, 6.84336689814190172896956344878, 7.28041937899198388112679911274, 7.85915389556093308374638347098, 8.516429707022264165941143619278, 8.849992037896896618448988127874