L(s) = 1 | + 2·3-s − 4-s − 4·5-s + 3·9-s − 4·11-s − 2·12-s − 8·15-s + 16-s + 4·20-s − 4·23-s + 2·25-s + 4·27-s − 4·31-s − 8·33-s − 3·36-s + 2·37-s + 4·44-s − 12·45-s − 8·47-s + 2·48-s + 2·49-s − 4·53-s + 16·55-s − 4·59-s + 8·60-s − 64-s − 16·67-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1/2·4-s − 1.78·5-s + 9-s − 1.20·11-s − 0.577·12-s − 2.06·15-s + 1/4·16-s + 0.894·20-s − 0.834·23-s + 2/5·25-s + 0.769·27-s − 0.718·31-s − 1.39·33-s − 1/2·36-s + 0.328·37-s + 0.603·44-s − 1.78·45-s − 1.16·47-s + 0.288·48-s + 2/7·49-s − 0.549·53-s + 2.15·55-s − 0.520·59-s + 1.03·60-s − 1/8·64-s − 1.95·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.40325812522328116162668582788, −6.80031935139358593306537775320, −6.25277707540942830552835496228, −5.86743793231189124007806721872, −5.17573499202240282151979119730, −4.90816884594787275867110960012, −4.37070103961922857699940668084, −4.08334383981651600882495882066, −3.57164188739863552558476287768, −3.35428295593229392000224975162, −2.86751256274482305221434995577, −2.15925311839585975584634470979, −1.77795682771183839383983003699, −0.67380715926683428669346712561, 0,
0.67380715926683428669346712561, 1.77795682771183839383983003699, 2.15925311839585975584634470979, 2.86751256274482305221434995577, 3.35428295593229392000224975162, 3.57164188739863552558476287768, 4.08334383981651600882495882066, 4.37070103961922857699940668084, 4.90816884594787275867110960012, 5.17573499202240282151979119730, 5.86743793231189124007806721872, 6.25277707540942830552835496228, 6.80031935139358593306537775320, 7.40325812522328116162668582788