L(s) = 1 | + 2·2-s + 3·4-s − 6·7-s + 4·8-s − 6·13-s − 12·14-s + 5·16-s − 6·19-s + 6·23-s − 7·25-s − 12·26-s − 18·28-s − 6·29-s − 10·31-s + 6·32-s − 4·37-s − 12·38-s − 12·41-s + 12·46-s + 6·47-s + 16·49-s − 14·50-s − 18·52-s − 12·53-s − 24·56-s − 12·58-s − 12·59-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s − 2.26·7-s + 1.41·8-s − 1.66·13-s − 3.20·14-s + 5/4·16-s − 1.37·19-s + 1.25·23-s − 7/5·25-s − 2.35·26-s − 3.40·28-s − 1.11·29-s − 1.79·31-s + 1.06·32-s − 0.657·37-s − 1.94·38-s − 1.87·41-s + 1.76·46-s + 0.875·47-s + 16/7·49-s − 1.97·50-s − 2.49·52-s − 1.64·53-s − 3.20·56-s − 1.57·58-s − 1.56·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.027219211629765449870574725073, −8.590027358934258984720025276059, −7.64501864794063013815953914908, −7.64107503646323270620249412976, −7.20487945566184512677378007240, −6.78772293748463371709781686832, −6.33966068652661967401586500006, −6.26454186299328813581146942270, −5.60517856043032190864113790163, −5.40272703936423579837973669233, −4.65239771122132418890426332691, −4.61500109267265952492823062272, −3.66633512567868361237070146886, −3.66473770872035042467056476711, −3.06419575855914689132187049858, −2.80271186854417334635065665712, −1.98509485485938539927827423007, −1.78253948958468122601246220165, 0, 0,
1.78253948958468122601246220165, 1.98509485485938539927827423007, 2.80271186854417334635065665712, 3.06419575855914689132187049858, 3.66473770872035042467056476711, 3.66633512567868361237070146886, 4.61500109267265952492823062272, 4.65239771122132418890426332691, 5.40272703936423579837973669233, 5.60517856043032190864113790163, 6.26454186299328813581146942270, 6.33966068652661967401586500006, 6.78772293748463371709781686832, 7.20487945566184512677378007240, 7.64107503646323270620249412976, 7.64501864794063013815953914908, 8.590027358934258984720025276059, 9.027219211629765449870574725073