Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 12 x + 166 x^{2} - 852 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.310189415555$, $\pm0.451918768490$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1942848.1 |
Galois group: | $D_{4}$ |
Jacobians: | $210$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4344$ | $26376768$ | $128707198776$ | $645729024365568$ | $3255114062257708344$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $5230$ | $359604$ | $25410718$ | $1804157580$ | $128100076558$ | $9095120233476$ | $645753510278974$ | $45848500639512156$ | $3255243554652418990$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 210 curves (of which all are hyperelliptic):
- $y^2=13 x^6+65 x^5+3 x^4+18 x^3+38 x^2+33 x+40$
- $y^2=65 x^6+30 x^5+53 x^4+35 x^3+53 x^2+6 x+18$
- $y^2=22 x^6+19 x^5+44 x^4+23 x^3+53 x^2+32 x+7$
- $y^2=39 x^6+53 x^5+42 x^4+55 x^3+46 x^2+19 x+11$
- $y^2=11 x^6+38 x^5+48 x^4+36 x^3+22 x^2+68 x+26$
- $y^2=41 x^6+59 x^5+54 x^4+40 x^3+53 x^2+57 x+6$
- $y^2=24 x^6+57 x^5+24 x^4+5 x^3+9 x^2+8 x+66$
- $y^2=55 x^6+8 x^5+2 x^4+59 x^3+48 x^2+11 x+53$
- $y^2=41 x^6+19 x^5+45 x^4+46 x^3+63 x^2+12 x+40$
- $y^2=x^6+48 x^5+29 x^4+55 x^3+60 x^2+50 x+21$
- $y^2=14 x^6+25 x^5+24 x^4+69 x^3+23 x^2+3 x+19$
- $y^2=56 x^6+43 x^5+60 x^4+42 x^3+57 x^2+8 x+63$
- $y^2=22 x^6+7 x^5+39 x^4+6 x^3+19 x^2+34 x+66$
- $y^2=43 x^6+58 x^5+59 x^4+58 x^3+10 x^2+13 x+34$
- $y^2=52 x^6+44 x^5+70 x^4+9 x^3+28 x^2+16 x+56$
- $y^2=19 x^6+59 x^5+14 x^4+16 x^3+26 x^2+41 x+38$
- $y^2=36 x^6+61 x^5+29 x^4+29 x^3+20 x^2+69 x+26$
- $y^2=36 x^6+8 x^5+27 x^4+17 x^3+34 x^2+9 x+49$
- $y^2=28 x^6+2 x^5+69 x^4+36 x^3+66 x^2+15 x+54$
- $y^2=13 x^6+7 x^5+57 x^4+22 x^3+55 x^2+37 x+68$
- and 190 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is 4.0.1942848.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.m_gk | $2$ | (not in LMFDB) |