Properties

Label 2.71.am_gk
Base field $\F_{71}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{71}$
Dimension:  $2$
L-polynomial:  $1 - 12 x + 166 x^{2} - 852 x^{3} + 5041 x^{4}$
Frobenius angles:  $\pm0.310189415555$, $\pm0.451918768490$
Angle rank:  $2$ (numerical)
Number field:  4.0.1942848.1
Galois group:  $D_{4}$
Jacobians:  $210$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4344$ $26376768$ $128707198776$ $645729024365568$ $3255114062257708344$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $60$ $5230$ $359604$ $25410718$ $1804157580$ $128100076558$ $9095120233476$ $645753510278974$ $45848500639512156$ $3255243554652418990$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 210 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{71}$.

Endomorphism algebra over $\F_{71}$
The endomorphism algebra of this simple isogeny class is 4.0.1942848.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.71.m_gk$2$(not in LMFDB)