Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 12 x + 134 x^{2} + 876 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.482701215973$, $\pm0.773124336949$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.327168.1 |
Galois group: | $D_{4}$ |
Jacobians: | $312$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6352$ | $29066752$ | $151152808144$ | $806454476365824$ | $4297402964099000272$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $86$ | $5454$ | $388550$ | $28398046$ | $2072964086$ | $151335291822$ | $11047402804454$ | $806459992910014$ | $58871586961343126$ | $4297625830498328334$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 312 curves (of which all are hyperelliptic):
- $y^2=33 x^6+53 x^5+69 x^4+33 x^3+22 x^2+52 x+10$
- $y^2=9 x^6+11 x^5+27 x^4+63 x^3+15 x^2+41 x+57$
- $y^2=33 x^6+29 x^5+19 x^4+4 x^3+32 x^2+41 x+64$
- $y^2=58 x^6+68 x^5+30 x^3+54 x^2+39 x+25$
- $y^2=23 x^6+66 x^5+39 x^4+13 x^3+21 x^2+51 x+71$
- $y^2=11 x^6+12 x^5+57 x^4+23 x^3+45 x^2+52 x+56$
- $y^2=50 x^6+45 x^5+22 x^4+36 x^3+59 x^2+37 x+27$
- $y^2=4 x^6+40 x^5+41 x^4+59 x^3+45 x^2+40 x+62$
- $y^2=39 x^6+2 x^5+47 x^4+4 x^3+48 x^2+3 x+64$
- $y^2=39 x^6+52 x^5+15 x^4+49 x^3+35 x^2+40 x+9$
- $y^2=64 x^6+51 x^4+6 x^3+40 x^2+23 x+17$
- $y^2=56 x^6+25 x^5+31 x^4+58 x^3+72 x^2+18 x+64$
- $y^2=56 x^6+29 x^5+39 x^4+72 x^3+24 x^2+55 x+69$
- $y^2=8 x^6+44 x^5+64 x^4+13 x^3+60 x^2+60 x$
- $y^2=12 x^6+50 x^5+62 x^4+x^3+42 x^2+21 x+55$
- $y^2=16 x^6+48 x^5+61 x^4+39 x^3+34 x^2+38 x+10$
- $y^2=41 x^6+66 x^5+28 x^4+40 x^3+15 x^2+52 x+72$
- $y^2=21 x^6+45 x^5+65 x^4+28 x^3+68 x^2+53 x+33$
- $y^2=27 x^6+12 x^5+27 x^4+33 x^3+15 x+1$
- $y^2=31 x^6+13 x^5+48 x^4+65 x^3+59 x^2+6 x+48$
- and 292 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.327168.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.am_fe | $2$ | (not in LMFDB) |