Properties

Label 4-165888-1.1-c1e2-0-10
Degree $4$
Conductor $165888$
Sign $1$
Analytic cond. $10.5771$
Root an. cond. $1.80340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·7-s + 9-s + 2·11-s − 13-s − 3·19-s + 3·21-s − 2·23-s − 2·25-s + 27-s + 6·29-s + 2·33-s + 5·37-s − 39-s − 6·41-s + 6·47-s − 5·49-s + 18·53-s − 3·57-s + 10·59-s + 61-s + 3·63-s + 9·67-s − 2·69-s + 4·71-s − 5·73-s − 2·75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.13·7-s + 1/3·9-s + 0.603·11-s − 0.277·13-s − 0.688·19-s + 0.654·21-s − 0.417·23-s − 2/5·25-s + 0.192·27-s + 1.11·29-s + 0.348·33-s + 0.821·37-s − 0.160·39-s − 0.937·41-s + 0.875·47-s − 5/7·49-s + 2.47·53-s − 0.397·57-s + 1.30·59-s + 0.128·61-s + 0.377·63-s + 1.09·67-s − 0.240·69-s + 0.474·71-s − 0.585·73-s − 0.230·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(165888\)    =    \(2^{11} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(10.5771\)
Root analytic conductor: \(1.80340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 165888,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.411186321\)
\(L(\frac12)\) \(\approx\) \(2.411186321\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \) 2.5.a_c
7$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \) 2.7.ad_o
11$D_{4}$ \( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.11.ac_k
13$D_{4}$ \( 1 + T + 8 T^{2} + p T^{3} + p^{2} T^{4} \) 2.13.b_i
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \) 2.17.a_c
19$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.19.d_bi
23$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.23.c_c
29$D_{4}$ \( 1 - 6 T + 10 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.29.ag_k
31$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \) 2.31.a_be
37$D_{4}$ \( 1 - 5 T + 20 T^{2} - 5 p T^{3} + p^{2} T^{4} \) 2.37.af_u
41$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.41.g_s
43$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \) 2.43.a_cc
47$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.47.ag_s
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) 2.53.as_gg
59$D_{4}$ \( 1 - 10 T + 106 T^{2} - 10 p T^{3} + p^{2} T^{4} \) 2.59.ak_ec
61$D_{4}$ \( 1 - T - 76 T^{2} - p T^{3} + p^{2} T^{4} \) 2.61.ab_acy
67$D_{4}$ \( 1 - 9 T + 74 T^{2} - 9 p T^{3} + p^{2} T^{4} \) 2.67.aj_cw
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.71.ae_bu
73$D_{4}$ \( 1 + 5 T + 92 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.73.f_do
79$D_{4}$ \( 1 + 3 T + 62 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.79.d_ck
83$D_{4}$ \( 1 - 8 T + 70 T^{2} - 8 p T^{3} + p^{2} T^{4} \) 2.83.ai_cs
89$C_2^2$ \( 1 + 146 T^{2} + p^{2} T^{4} \) 2.89.a_fq
97$D_{4}$ \( 1 + T + 156 T^{2} + p T^{3} + p^{2} T^{4} \) 2.97.b_ga
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.5638533456, −13.3591590356, −12.7121568150, −12.2863266677, −11.8004834646, −11.5717507945, −11.0462963604, −10.5015415138, −10.1052280985, −9.71082147189, −9.11631492138, −8.58584376580, −8.35545937940, −7.88868604852, −7.38667699272, −6.74941998521, −6.45987133399, −5.61288286827, −5.19244772144, −4.45480143037, −4.12951489885, −3.47977361779, −2.51167541148, −2.05088101784, −1.08742327211, 1.08742327211, 2.05088101784, 2.51167541148, 3.47977361779, 4.12951489885, 4.45480143037, 5.19244772144, 5.61288286827, 6.45987133399, 6.74941998521, 7.38667699272, 7.88868604852, 8.35545937940, 8.58584376580, 9.11631492138, 9.71082147189, 10.1052280985, 10.5015415138, 11.0462963604, 11.5717507945, 11.8004834646, 12.2863266677, 12.7121568150, 13.3591590356, 13.5638533456

Graph of the $Z$-function along the critical line