L(s) = 1 | + 3-s + 3·7-s + 9-s + 2·11-s − 13-s − 3·19-s + 3·21-s − 2·23-s − 2·25-s + 27-s + 6·29-s + 2·33-s + 5·37-s − 39-s − 6·41-s + 6·47-s − 5·49-s + 18·53-s − 3·57-s + 10·59-s + 61-s + 3·63-s + 9·67-s − 2·69-s + 4·71-s − 5·73-s − 2·75-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.13·7-s + 1/3·9-s + 0.603·11-s − 0.277·13-s − 0.688·19-s + 0.654·21-s − 0.417·23-s − 2/5·25-s + 0.192·27-s + 1.11·29-s + 0.348·33-s + 0.821·37-s − 0.160·39-s − 0.937·41-s + 0.875·47-s − 5/7·49-s + 2.47·53-s − 0.397·57-s + 1.30·59-s + 0.128·61-s + 0.377·63-s + 1.09·67-s − 0.240·69-s + 0.474·71-s − 0.585·73-s − 0.230·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.411186321\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.411186321\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.5638533456, −13.3591590356, −12.7121568150, −12.2863266677, −11.8004834646, −11.5717507945, −11.0462963604, −10.5015415138, −10.1052280985, −9.71082147189, −9.11631492138, −8.58584376580, −8.35545937940, −7.88868604852, −7.38667699272, −6.74941998521, −6.45987133399, −5.61288286827, −5.19244772144, −4.45480143037, −4.12951489885, −3.47977361779, −2.51167541148, −2.05088101784, −1.08742327211,
1.08742327211, 2.05088101784, 2.51167541148, 3.47977361779, 4.12951489885, 4.45480143037, 5.19244772144, 5.61288286827, 6.45987133399, 6.74941998521, 7.38667699272, 7.88868604852, 8.35545937940, 8.58584376580, 9.11631492138, 9.71082147189, 10.1052280985, 10.5015415138, 11.0462963604, 11.5717507945, 11.8004834646, 12.2863266677, 12.7121568150, 13.3591590356, 13.5638533456