Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 10 x^{2} - 174 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.0645199313815$, $\pm0.638826817887$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.90972.2 |
Galois group: | $D_{4}$ |
Jacobians: | $44$ |
Isomorphism classes: | 80 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $672$ | $693504$ | $581339808$ | $499633569792$ | $420761265120672$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $826$ | $23832$ | $706414$ | $20513784$ | $594764170$ | $17249813304$ | $500247814750$ | $14507142509016$ | $420707237264986$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=19 x^6+12 x^5+13 x^4+20 x^3+3 x^2+13 x+10$
- $y^2=18 x^6+2 x^5+25 x^4+18 x^3+5 x^2+6 x+11$
- $y^2=28 x^6+17 x^5+26 x^4+11 x^3+13 x^2+18 x+27$
- $y^2=27 x^6+15 x^5+13 x^4+2 x^3+16 x^2+11 x+3$
- $y^2=x^6+8 x^5+21 x^4+15 x^3+11 x^2+25 x+11$
- $y^2=18 x^6+15 x^5+9 x^4+5 x^3+27 x^2+14 x+20$
- $y^2=20 x^6+13 x^5+14 x^4+10 x^3+10 x^2+26 x+11$
- $y^2=18 x^6+11 x^5+2 x^4+24 x^3+12 x^2+8$
- $y^2=8 x^6+3 x^5+11 x^3+21 x^2+3 x+18$
- $y^2=26 x^6+23 x^5+21 x^4+8 x^3+23 x^2+21 x+14$
- $y^2=28 x^6+28 x^5+26 x^4+18 x^3+2 x+20$
- $y^2=13 x^6+17 x^5+17 x^4+2 x^3+13 x^2+4 x+27$
- $y^2=11 x^6+28 x^5+12 x^4+16 x^3+7 x^2+21 x+13$
- $y^2=14 x^6+15 x^5+23 x^4+6 x^3+6 x+2$
- $y^2=4 x^6+25 x^5+x^4+19 x^3+20 x^2+20 x+6$
- $y^2=22 x^6+12 x^5+11 x^4+10 x^2+17 x+7$
- $y^2=19 x^6+12 x^5+25 x^3+6 x^2+25 x+3$
- $y^2=4 x^6+12 x^5+19 x^4+22 x^3+19 x^2+17 x+1$
- $y^2=27 x^6+25 x^5+8 x^4+24 x^3+11 x^2+4 x+17$
- $y^2=6 x^6+13 x^5+x^4+24 x^3+15 x^2+5 x+21$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.90972.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.g_k | $2$ | (not in LMFDB) |