-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 672, 'abvar_counts': [672, 693504, 581339808, 499633569792, 420761265120672, 353779600120982784, 297557145865516772256, 250247174920862044520448, 210457234071033808520170656, 176994577819123646991697661184], 'abvar_counts_str': '672 693504 581339808 499633569792 420761265120672 353779600120982784 297557145865516772256 250247174920862044520448 210457234071033808520170656 176994577819123646991697661184 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.0645199313814699, 0.638826817886996], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 24, 'curve_counts': [24, 826, 23832, 706414, 20513784, 594764170, 17249813304, 500247814750, 14507142509016, 420707237264986], 'curve_counts_str': '24 826 23832 706414 20513784 594764170 17249813304 500247814750 14507142509016 420707237264986 ', 'curves': ['y^2=19*x^6+12*x^5+13*x^4+20*x^3+3*x^2+13*x+10', 'y^2=18*x^6+2*x^5+25*x^4+18*x^3+5*x^2+6*x+11', 'y^2=28*x^6+17*x^5+26*x^4+11*x^3+13*x^2+18*x+27', 'y^2=27*x^6+15*x^5+13*x^4+2*x^3+16*x^2+11*x+3', 'y^2=x^6+8*x^5+21*x^4+15*x^3+11*x^2+25*x+11', 'y^2=18*x^6+15*x^5+9*x^4+5*x^3+27*x^2+14*x+20', 'y^2=20*x^6+13*x^5+14*x^4+10*x^3+10*x^2+26*x+11', 'y^2=18*x^6+11*x^5+2*x^4+24*x^3+12*x^2+8', 'y^2=8*x^6+3*x^5+11*x^3+21*x^2+3*x+18', 'y^2=26*x^6+23*x^5+21*x^4+8*x^3+23*x^2+21*x+14', 'y^2=28*x^6+28*x^5+26*x^4+18*x^3+2*x+20', 'y^2=13*x^6+17*x^5+17*x^4+2*x^3+13*x^2+4*x+27', 'y^2=11*x^6+28*x^5+12*x^4+16*x^3+7*x^2+21*x+13', 'y^2=14*x^6+15*x^5+23*x^4+6*x^3+6*x+2', 'y^2=4*x^6+25*x^5+x^4+19*x^3+20*x^2+20*x+6', 'y^2=22*x^6+12*x^5+11*x^4+10*x^2+17*x+7', 'y^2=19*x^6+12*x^5+25*x^3+6*x^2+25*x+3', 'y^2=4*x^6+12*x^5+19*x^4+22*x^3+19*x^2+17*x+1', 'y^2=27*x^6+25*x^5+8*x^4+24*x^3+11*x^2+4*x+17', 'y^2=6*x^6+13*x^5+x^4+24*x^3+15*x^2+5*x+21', 'y^2=24*x^6+12*x^5+9*x^4+12*x^3+9*x^2+12*x+27', 'y^2=8*x^6+18*x^5+6*x^4+19*x^3+25*x+19', 'y^2=20*x^6+14*x^4+14*x^3+18*x^2+14*x+3', 'y^2=15*x^5+19*x^4+7*x^3+21*x^2+17*x+16', 'y^2=5*x^6+x^5+4*x^4+4*x^3+19*x^2+19*x+19', 'y^2=28*x^6+3*x^5+21*x^4+17*x^3+17*x+3', 'y^2=11*x^6+21*x^5+4*x^4+26*x^3+12*x^2+28*x+1', 'y^2=17*x^6+16*x^5+16*x^4+22*x^3+11*x^2+15*x', 'y^2=25*x^6+8*x^5+28*x^4+13*x^3+27*x^2+27*x+17', 'y^2=5*x^6+27*x^5+19*x^4+12*x^3+22*x^2+6*x+9', 'y^2=25*x^6+28*x^5+17*x^4+24*x^3+19*x^2+11*x+6', 'y^2=19*x^6+20*x^5+8*x^4+5*x^3+7*x+15', 'y^2=6*x^6+6*x^5+20*x^4+19*x^3+8*x^2+21*x+18', 'y^2=10*x^6+15*x^5+24*x^4+15*x^3+23*x^2+10*x+12', 'y^2=18*x^6+5*x^5+13*x^4+6*x^3+28*x^2+17*x', 'y^2=15*x^6+11*x^5+4*x^4+7*x^3+18*x^2+20*x+12', 'y^2=17*x^6+22*x^5+8*x^4+11*x^3+22*x^2+15*x+28', 'y^2=11*x^6+26*x^5+28*x^4+20*x^3+16*x^2+24*x+10', 'y^2=11*x^6+26*x^5+16*x^4+16*x^3+26*x^2+3*x+7', 'y^2=8*x^6+22*x^5+x^4+10*x^3+10*x+21', 'y^2=20*x^6+27*x^5+28*x^4+9*x^3+22*x^2+16*x+26', 'y^2=10*x^6+10*x^5+24*x^4+4*x^3+6*x^2+14*x+26', 'y^2=19*x^6+28*x^5+20*x^4+21*x^3+26*x^2+14*x+16', 'y^2=24*x^6+6*x^5+25*x^4+28*x^3+25*x^2+2*x+8'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 6, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.90972.2'], 'geometric_splitting_field': '4.0.44688.2', 'geometric_splitting_polynomials': [[29, 2, 6, -2, 1]], 'group_structure_count': 5, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 44, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 44, 'label': '2.29.ag_k', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.90972.2'], 'p': 29, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 12], [1, 7, 1, 2]], 'poly': [1, -6, 10, -174, 841], 'poly_str': '1 -6 10 -174 841 ', 'primitive_models': [], 'principal_polarization_count': 44, 'q': 29, 'real_poly': [1, -6, -48], 'simple_distinct': ['2.29.ag_k'], 'simple_factors': ['2.29.ag_kA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-F^2-F-2'], 'size': 80, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.44688.2', 'splitting_polynomials': [[29, 2, 6, -2, 1]], 'twist_count': 2, 'twists': [['2.29.g_k', '2.841.aq_alu', 2]], 'weak_equivalence_count': 8, 'zfv_index': 16, 'zfv_index_factorization': [[2, 4]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_pic_size': 24, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 448, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,-F^2-F-2']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.29.ag_k', 'extension_degree': 1, 'extension_label': '2.29.ag_k', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.90972.2', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.29.ag_k', 'galois_group': '4T3', 'places': [['2', '1', '0', '0'], ['3', '1', '0', '0'], ['26', '1', '0', '0'], ['27', '1', '0', '0']]}