Properties

Label 2.67.aj_cw
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 9 x + 74 x^{2} - 603 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.192806520146$, $\pm0.587794280912$
Angle rank:  $2$ (numerical)
Number field:  4.0.555287949.1
Galois group:  $D_{4}$
Jacobians:  $84$
Isomorphism classes:  252

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3952$ $20455552$ $90296355136$ $406122320208384$ $1823033798030550352$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $59$ $4557$ $300224$ $20153833$ $1350270269$ $90458861622$ $6060709237271$ $406067696127121$ $27206534376147008$ $1822837799416018557$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.555287949.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.j_cw$2$(not in LMFDB)