Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$3952$ |
$20455552$ |
$90296355136$ |
$406122320208384$ |
$1823033798030550352$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$59$ |
$4557$ |
$300224$ |
$20153833$ |
$1350270269$ |
$90458861622$ |
$6060709237271$ |
$406067696127121$ |
$27206534376147008$ |
$1822837799416018557$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):
- $y^2=16 x^6+61 x^5+52 x^4+18 x^3+19 x^2+4 x+63$
- $y^2=26 x^6+36 x^5+38 x^4+11 x^3+12 x^2+23 x+2$
- $y^2=48 x^6+28 x^5+33 x^4+33 x^3+35 x^2+26 x+50$
- $y^2=39 x^6+20 x^5+54 x^4+51 x^3+5 x^2+32 x+49$
- $y^2=63 x^6+55 x^5+2 x^4+6 x^3+29 x^2+52 x+33$
- $y^2=64 x^6+53 x^5+50 x^4+60 x^3+56 x^2+36 x+44$
- $y^2=3 x^6+4 x^5+17 x^4+5 x^3+48 x^2+60 x+37$
- $y^2=8 x^6+19 x^5+60 x^4+22 x^3+31 x^2+24 x+11$
- $y^2=58 x^6+60 x^5+42 x^4+21 x^3+3 x^2+12 x+37$
- $y^2=46 x^6+48 x^5+48 x^4+25 x^3+58 x^2+31 x+5$
- $y^2=2 x^6+9 x^5+51 x^4+56 x^3+57 x^2+51 x+1$
- $y^2=24 x^6+16 x^5+26 x^4+7 x^3+x^2+39 x+55$
- $y^2=5 x^6+40 x^5+41 x^4+31 x^3+50 x^2+18 x+31$
- $y^2=28 x^6+6 x^5+65 x^4+64 x^3+18 x^2+49 x+49$
- $y^2=60 x^6+56 x^5+52 x^4+50 x^3+14 x^2+7 x+66$
- $y^2=61 x^6+62 x^5+36 x^4+36 x^3+54 x^2+66 x+43$
- $y^2=42 x^6+65 x^5+17 x^4+56 x^3+x^2+37 x+62$
- $y^2=x^6+10 x^5+29 x^3+10 x^2+46 x+52$
- $y^2=5 x^6+55 x^5+35 x^4+11 x^3+18 x+10$
- $y^2=65 x^6+9 x^5+33 x^4+18 x^3+26 x^2+64 x+54$
- and 64 more
- $y^2=43 x^6+63 x^5+40 x^4+25 x^3+30 x^2+6 x+32$
- $y^2=31 x^6+55 x^5+35 x^4+59 x^3+11 x^2+45 x+8$
- $y^2=46 x^6+9 x^5+16 x^4+39 x^3+39 x^2+58 x+21$
- $y^2=18 x^6+51 x^5+27 x^4+47 x^3+34 x^2+16 x+6$
- $y^2=25 x^6+53 x^5+47 x^4+22 x^3+19 x^2+32 x+34$
- $y^2=48 x^6+29 x^5+42 x^4+59 x^3+6 x^2+46 x+46$
- $y^2=21 x^6+14 x^5+2 x^4+44 x^3+21 x^2+33 x+62$
- $y^2=61 x^6+56 x^5+5 x^4+59 x^3+41 x^2+50 x+9$
- $y^2=58 x^6+29 x^5+37 x^4+28 x^3+65 x^2+22 x+39$
- $y^2=31 x^6+22 x^5+22 x^4+51 x^3+42 x^2+56 x+32$
- $y^2=45 x^6+5 x^5+46 x^4+9 x^3+11 x^2+62 x+57$
- $y^2=30 x^6+10 x^5+49 x^4+47 x^3+22 x^2+40 x+38$
- $y^2=2 x^6+57 x^5+45 x^4+11 x^3+42 x^2+54 x+5$
- $y^2=55 x^6+22 x^5+53 x^4+15 x^3+55 x^2+35 x+17$
- $y^2=58 x^6+56 x^5+56 x^4+14 x^3+47 x^2+13 x+28$
- $y^2=61 x^6+50 x^5+40 x^4+26 x^3+38 x^2+64 x+21$
- $y^2=11 x^6+57 x^5+51 x^4+39 x^3+11 x^2+19 x+50$
- $y^2=33 x^6+47 x^5+40 x^4+61 x^3+29 x^2+37 x+12$
- $y^2=3 x^6+20 x^5+54 x^4+41 x^3+25 x^2+26 x+46$
- $y^2=27 x^6+3 x^5+10 x^4+11 x^3+62 x^2+x+58$
- $y^2=63 x^6+62 x^5+5 x^4+36 x^3+62 x^2+9 x+11$
- $y^2=58 x^6+44 x^5+60 x^4+27 x^3+17 x^2+26 x+54$
- $y^2=28 x^6+10 x^5+58 x^4+30 x^3+21 x^2+56 x+8$
- $y^2=5 x^6+8 x^5+21 x^4+18 x^3+4 x^2+10 x+38$
- $y^2=51 x^6+4 x^5+48 x^4+35 x^3+35 x^2+34 x+64$
- $y^2=60 x^6+18 x^5+41 x^4+64 x^2+10 x+20$
- $y^2=64 x^6+x^5+63 x^4+3 x^3+35 x^2+62 x+8$
- $y^2=55 x^6+53 x^5+35 x^4+38 x^3+53 x^2+45 x+8$
- $y^2=20 x^6+23 x^5+9 x^4+17 x^3+54 x^2+57 x+29$
- $y^2=37 x^6+35 x^5+65 x^4+12 x^3+33 x^2+60 x+56$
- $y^2=27 x^6+44 x^5+6 x^4+41 x^3+5 x^2+25 x+7$
- $y^2=19 x^6+12 x^5+3 x^4+2 x^3+57 x^2+64 x+6$
- $y^2=38 x^6+55 x^5+4 x^4+9 x^3+25 x^2+57 x$
- $y^2=35 x^6+x^5+38 x^4+66 x^3+43 x^2+52 x+18$
- $y^2=58 x^6+20 x^5+58 x^4+59 x^3+15 x^2+51 x+28$
- $y^2=38 x^6+19 x^5+17 x^4+13 x^3+3 x^2+42 x+13$
- $y^2=46 x^6+44 x^5+x^4+47 x^3+29 x^2+25 x+60$
- $y^2=30 x^6+40 x^5+32 x^4+35 x^3+18 x^2+45 x+48$
- $y^2=63 x^6+42 x^5+28 x^4+10 x^3+43 x^2+42 x+5$
- $y^2=47 x^6+24 x^5+28 x^3+20 x^2+52 x+2$
- $y^2=47 x^6+48 x^5+50 x^4+38 x^3+48 x^2+45 x+14$
- $y^2=31 x^6+58 x^5+46 x^4+41 x^3+29 x^2+2 x+53$
- $y^2=53 x^6+65 x^5+57 x^4+3 x^3+38 x^2+41 x+7$
- $y^2=21 x^6+49 x^5+50 x^4+35 x^3+33 x^2+3 x+38$
- $y^2=21 x^5+15 x^4+42 x^3+38 x^2+50 x+40$
- $y^2=60 x^6+35 x^5+27 x^4+32 x^3+18 x^2+64 x+29$
- $y^2=21 x^6+22 x^5+63 x^4+60 x^3+9 x^2+52 x+35$
- $y^2=21 x^6+49 x^5+56 x^4+63 x^3+48 x^2+14 x+2$
- $y^2=2 x^6+32 x^5+60 x^4+62 x^3+32 x^2+11 x+28$
- $y^2=26 x^6+48 x^5+24 x^4+15 x^3+13 x^2+46 x+13$
- $y^2=53 x^6+23 x^5+23 x^4+66 x^3+46 x^2+56 x+15$
- $y^2=65 x^6+45 x^5+32 x^4+63 x^3+39 x^2+27 x+41$
- $y^2=24 x^6+25 x^5+33 x^4+26 x^3+14 x^2+65 x+18$
- $y^2=5 x^6+18 x^5+19 x^4+57 x^3+23 x^2+32 x+47$
- $y^2=56 x^6+65 x^5+35 x^4+x^3+61 x^2+32 x+59$
- $y^2=x^6+27 x^5+15 x^4+28 x^3+4 x^2+45 x+62$
- $y^2=13 x^6+32 x^5+x^4+43 x^3+47 x^2+22 x+2$
- $y^2=53 x^6+12 x^5+9 x^3+27 x^2+44 x+55$
- $y^2=34 x^6+10 x^5+45 x^4+22 x^3+53 x^2+36 x+21$
- $y^2=43 x^6+64 x^5+12 x^4+7 x^3+21 x^2+51 x+3$
- $y^2=48 x^6+38 x^5+56 x^4+51 x^3+40 x^2+5 x+1$
- $y^2=64 x^6+6 x^5+24 x^4+47 x^3+37 x^2+13 x+36$
- $y^2=49 x^6+57 x^5+40 x^4+26 x^2+56 x+28$
- $y^2=9 x^6+30 x^5+10 x^4+44 x^3+12 x^2+3 x+3$
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.67.j_cw | $2$ | (not in LMFDB) |