# Stored data for abelian variety isogeny class 2.67.aj_cw, downloaded from the LMFDB on 13 October 2025. {"abvar_count": 3952, "abvar_counts": [3952, 20455552, 90296355136, 406122320208384, 1823033798030550352, 8182762275239247394816, 36732210810812394637271824, 164890966297116127434935961600, 740195513308624443102477245579584, 3322737652341459382775624042495642752], "abvar_counts_str": "3952 20455552 90296355136 406122320208384 1823033798030550352 8182762275239247394816 36732210810812394637271824 164890966297116127434935961600 740195513308624443102477245579584 3322737652341459382775624042495642752 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.192806520145519, 0.587794280912273], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 59, "curve_counts": [59, 4557, 300224, 20153833, 1350270269, 90458861622, 6060709237271, 406067696127121, 27206534376147008, 1822837799416018557], "curve_counts_str": "59 4557 300224 20153833 1350270269 90458861622 6060709237271 406067696127121 27206534376147008 1822837799416018557 ", "curves": ["y^2=16*x^6+61*x^5+52*x^4+18*x^3+19*x^2+4*x+63", "y^2=26*x^6+36*x^5+38*x^4+11*x^3+12*x^2+23*x+2", "y^2=48*x^6+28*x^5+33*x^4+33*x^3+35*x^2+26*x+50", "y^2=39*x^6+20*x^5+54*x^4+51*x^3+5*x^2+32*x+49", "y^2=63*x^6+55*x^5+2*x^4+6*x^3+29*x^2+52*x+33", "y^2=64*x^6+53*x^5+50*x^4+60*x^3+56*x^2+36*x+44", "y^2=3*x^6+4*x^5+17*x^4+5*x^3+48*x^2+60*x+37", "y^2=8*x^6+19*x^5+60*x^4+22*x^3+31*x^2+24*x+11", "y^2=58*x^6+60*x^5+42*x^4+21*x^3+3*x^2+12*x+37", "y^2=46*x^6+48*x^5+48*x^4+25*x^3+58*x^2+31*x+5", "y^2=2*x^6+9*x^5+51*x^4+56*x^3+57*x^2+51*x+1", "y^2=24*x^6+16*x^5+26*x^4+7*x^3+x^2+39*x+55", "y^2=5*x^6+40*x^5+41*x^4+31*x^3+50*x^2+18*x+31", "y^2=28*x^6+6*x^5+65*x^4+64*x^3+18*x^2+49*x+49", "y^2=60*x^6+56*x^5+52*x^4+50*x^3+14*x^2+7*x+66", "y^2=61*x^6+62*x^5+36*x^4+36*x^3+54*x^2+66*x+43", "y^2=42*x^6+65*x^5+17*x^4+56*x^3+x^2+37*x+62", "y^2=x^6+10*x^5+29*x^3+10*x^2+46*x+52", "y^2=5*x^6+55*x^5+35*x^4+11*x^3+18*x+10", "y^2=65*x^6+9*x^5+33*x^4+18*x^3+26*x^2+64*x+54", "y^2=43*x^6+63*x^5+40*x^4+25*x^3+30*x^2+6*x+32", "y^2=31*x^6+55*x^5+35*x^4+59*x^3+11*x^2+45*x+8", "y^2=46*x^6+9*x^5+16*x^4+39*x^3+39*x^2+58*x+21", "y^2=18*x^6+51*x^5+27*x^4+47*x^3+34*x^2+16*x+6", "y^2=25*x^6+53*x^5+47*x^4+22*x^3+19*x^2+32*x+34", "y^2=48*x^6+29*x^5+42*x^4+59*x^3+6*x^2+46*x+46", "y^2=21*x^6+14*x^5+2*x^4+44*x^3+21*x^2+33*x+62", "y^2=61*x^6+56*x^5+5*x^4+59*x^3+41*x^2+50*x+9", "y^2=58*x^6+29*x^5+37*x^4+28*x^3+65*x^2+22*x+39", "y^2=31*x^6+22*x^5+22*x^4+51*x^3+42*x^2+56*x+32", "y^2=45*x^6+5*x^5+46*x^4+9*x^3+11*x^2+62*x+57", "y^2=30*x^6+10*x^5+49*x^4+47*x^3+22*x^2+40*x+38", "y^2=2*x^6+57*x^5+45*x^4+11*x^3+42*x^2+54*x+5", "y^2=55*x^6+22*x^5+53*x^4+15*x^3+55*x^2+35*x+17", "y^2=58*x^6+56*x^5+56*x^4+14*x^3+47*x^2+13*x+28", "y^2=61*x^6+50*x^5+40*x^4+26*x^3+38*x^2+64*x+21", "y^2=11*x^6+57*x^5+51*x^4+39*x^3+11*x^2+19*x+50", "y^2=33*x^6+47*x^5+40*x^4+61*x^3+29*x^2+37*x+12", "y^2=3*x^6+20*x^5+54*x^4+41*x^3+25*x^2+26*x+46", "y^2=27*x^6+3*x^5+10*x^4+11*x^3+62*x^2+x+58", "y^2=63*x^6+62*x^5+5*x^4+36*x^3+62*x^2+9*x+11", "y^2=58*x^6+44*x^5+60*x^4+27*x^3+17*x^2+26*x+54", "y^2=28*x^6+10*x^5+58*x^4+30*x^3+21*x^2+56*x+8", "y^2=5*x^6+8*x^5+21*x^4+18*x^3+4*x^2+10*x+38", "y^2=51*x^6+4*x^5+48*x^4+35*x^3+35*x^2+34*x+64", "y^2=60*x^6+18*x^5+41*x^4+64*x^2+10*x+20", "y^2=64*x^6+x^5+63*x^4+3*x^3+35*x^2+62*x+8", "y^2=55*x^6+53*x^5+35*x^4+38*x^3+53*x^2+45*x+8", "y^2=20*x^6+23*x^5+9*x^4+17*x^3+54*x^2+57*x+29", "y^2=37*x^6+35*x^5+65*x^4+12*x^3+33*x^2+60*x+56", "y^2=27*x^6+44*x^5+6*x^4+41*x^3+5*x^2+25*x+7", "y^2=19*x^6+12*x^5+3*x^4+2*x^3+57*x^2+64*x+6", "y^2=38*x^6+55*x^5+4*x^4+9*x^3+25*x^2+57*x", "y^2=35*x^6+x^5+38*x^4+66*x^3+43*x^2+52*x+18", "y^2=58*x^6+20*x^5+58*x^4+59*x^3+15*x^2+51*x+28", "y^2=38*x^6+19*x^5+17*x^4+13*x^3+3*x^2+42*x+13", "y^2=46*x^6+44*x^5+x^4+47*x^3+29*x^2+25*x+60", "y^2=30*x^6+40*x^5+32*x^4+35*x^3+18*x^2+45*x+48", "y^2=63*x^6+42*x^5+28*x^4+10*x^3+43*x^2+42*x+5", "y^2=47*x^6+24*x^5+28*x^3+20*x^2+52*x+2", "y^2=47*x^6+48*x^5+50*x^4+38*x^3+48*x^2+45*x+14", "y^2=31*x^6+58*x^5+46*x^4+41*x^3+29*x^2+2*x+53", "y^2=53*x^6+65*x^5+57*x^4+3*x^3+38*x^2+41*x+7", "y^2=21*x^6+49*x^5+50*x^4+35*x^3+33*x^2+3*x+38", "y^2=21*x^5+15*x^4+42*x^3+38*x^2+50*x+40", "y^2=60*x^6+35*x^5+27*x^4+32*x^3+18*x^2+64*x+29", "y^2=21*x^6+22*x^5+63*x^4+60*x^3+9*x^2+52*x+35", "y^2=21*x^6+49*x^5+56*x^4+63*x^3+48*x^2+14*x+2", "y^2=2*x^6+32*x^5+60*x^4+62*x^3+32*x^2+11*x+28", "y^2=26*x^6+48*x^5+24*x^4+15*x^3+13*x^2+46*x+13", "y^2=53*x^6+23*x^5+23*x^4+66*x^3+46*x^2+56*x+15", "y^2=65*x^6+45*x^5+32*x^4+63*x^3+39*x^2+27*x+41", "y^2=24*x^6+25*x^5+33*x^4+26*x^3+14*x^2+65*x+18", "y^2=5*x^6+18*x^5+19*x^4+57*x^3+23*x^2+32*x+47", "y^2=56*x^6+65*x^5+35*x^4+x^3+61*x^2+32*x+59", "y^2=x^6+27*x^5+15*x^4+28*x^3+4*x^2+45*x+62", "y^2=13*x^6+32*x^5+x^4+43*x^3+47*x^2+22*x+2", "y^2=53*x^6+12*x^5+9*x^3+27*x^2+44*x+55", "y^2=34*x^6+10*x^5+45*x^4+22*x^3+53*x^2+36*x+21", "y^2=43*x^6+64*x^5+12*x^4+7*x^3+21*x^2+51*x+3", "y^2=48*x^6+38*x^5+56*x^4+51*x^3+40*x^2+5*x+1", "y^2=64*x^6+6*x^5+24*x^4+47*x^3+37*x^2+13*x+36", "y^2=49*x^6+57*x^5+40*x^4+26*x^2+56*x+28", "y^2=9*x^6+30*x^5+10*x^4+44*x^3+12*x^2+3*x+3"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.555287949.1"], "geometric_splitting_field": "4.0.555287949.1", "geometric_splitting_polynomials": [[3523, -383, 44, -1, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 84, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 84, "label": "2.67.aj_cw", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.555287949.1"], "p": 67, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 2, 1, 3], [1, 13, 1, 21], [1, 17, 1, 6], [1, 19, 1, 3]], "poly": [1, -9, 74, -603, 4489], "poly_str": "1 -9 74 -603 4489 ", "primitive_models": [], "principal_polarization_count": 84, "q": 67, "real_poly": [1, -9, -60], "simple_distinct": ["2.67.aj_cw"], "simple_factors": ["2.67.aj_cwA"], "simple_multiplicities": [1], "singular_primes": ["2,F+2*V-15"], "size": 252, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.555287949.1", "splitting_polynomials": [[3523, -383, 44, -1, 1]], "twist_count": 2, "twists": [["2.67.j_cw", "2.4489.cp_fim", 2]], "weak_equivalence_count": 2, "zfv_index": 2, "zfv_index_factorization": [[2, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 126, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 21556, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F+2*V-15"]}