Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 18 x^{2} + 246 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.357485388672$, $\pm0.857485388672$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{73})\) |
Galois group: | $C_2^2$ |
Jacobians: | $64$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1952$ | $2826496$ | $4793723552$ | $7989079638016$ | $13419156970788512$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $1682$ | $69552$ | $2827230$ | $115825968$ | $4750104242$ | $194753397936$ | $7984935454654$ | $327381939631152$ | $13422659310152402$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=40 x^6+18 x^5+4 x^4+8 x^3+16 x^2+37 x+1$
- $y^2=30 x^5+37 x^4+6 x^3+11 x^2+15 x+33$
- $y^2=30 x^6+3 x^5+40 x^4+9 x^3+14 x^2+27 x$
- $y^2=12 x^6+23 x^5+34 x^4+29 x^3+13 x^2+17 x+39$
- $y^2=4 x^6+27 x^5+13 x^4+15 x^3+26 x^2+12 x+18$
- $y^2=22 x^6+23 x^5+17 x^3+38 x^2+9 x+18$
- $y^2=22 x^6+38 x^5+18 x^4+5 x^3+16 x^2+10 x+13$
- $y^2=37 x^6+29 x^5+20 x^4+26 x^3+12 x^2+33 x+39$
- $y^2=16 x^6+22 x^5+3 x^4+38 x^3+7 x^2+12 x$
- $y^2=30 x^6+18 x^5+38 x^4+3 x^3+24 x^2+11 x+4$
- $y^2=25 x^6+9 x^5+34 x^4+39 x^3+38 x^2+9 x+39$
- $y^2=15 x^6+38 x^5+27 x^4+24 x^3+39 x^2+18 x+15$
- $y^2=3 x^6+37 x^5+19 x^4+35 x^3+2 x^2+14 x+12$
- $y^2=39 x^6+30 x^5+21 x^4+24 x^3+2 x^2+29 x+19$
- $y^2=2 x^6+20 x^5+16 x^4+13 x^3+32 x^2+17 x$
- $y^2=38 x^6+5 x^5+16 x^4+18 x^3+13 x^2+26 x+29$
- $y^2=17 x^6+19 x^5+34 x^4+38 x^3+37 x^2+26 x+40$
- $y^2=4 x^6+4 x^5+18 x^4+40 x^3+24 x^2+29 x+31$
- $y^2=37 x^5+24 x^4+35 x^3+7 x^2+10 x+16$
- $y^2=4 x^6+36 x^5+30 x^4+39 x^3+16 x^2+4 x+4$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{4}}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{73})\). |
The base change of $A$ to $\F_{41^{4}}$ is 1.2825761.bcg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-73}) \)$)$ |
- Endomorphism algebra over $\F_{41^{2}}$
The base change of $A$ to $\F_{41^{2}}$ is the simple isogeny class 2.1681.a_bcg and its endomorphism algebra is \(\Q(i, \sqrt{73})\).
Base change
This is a primitive isogeny class.