L(s) = 1 | − 6·5-s + 9-s − 8·13-s + 2·17-s + 17·25-s − 8·29-s − 10·37-s + 16·41-s − 6·45-s + 14·53-s − 10·61-s + 48·65-s − 18·73-s − 8·81-s − 12·85-s − 18·89-s − 16·97-s − 30·101-s + 2·109-s − 8·117-s − 15·121-s − 18·125-s + 127-s + 131-s + 137-s + 139-s + 48·145-s + ⋯ |
L(s) = 1 | − 2.68·5-s + 1/3·9-s − 2.21·13-s + 0.485·17-s + 17/5·25-s − 1.48·29-s − 1.64·37-s + 2.49·41-s − 0.894·45-s + 1.92·53-s − 1.28·61-s + 5.95·65-s − 2.10·73-s − 8/9·81-s − 1.30·85-s − 1.90·89-s − 1.62·97-s − 2.98·101-s + 0.191·109-s − 0.739·117-s − 1.36·121-s − 1.60·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3.98·145-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.184103940456518015149208806706, −8.789854742685838728323248138339, −8.249449341935105524748386875809, −7.967405898665135453413551990507, −7.53913952804632410949447415316, −7.26726060947591664900913283788, −7.17670856704358346602985306090, −6.73831694020147380196659511550, −5.69234076361403692922051143065, −5.59166095201616983637751160015, −4.96773852082193860014089291001, −4.36750459662573376651309619949, −4.12657124781325397932046710664, −3.94526305368862862693663543105, −3.13105759066402359655423564997, −2.85034690542453184245271084515, −2.13249797555959133595684337921, −1.18726156001547987362434063658, 0, 0,
1.18726156001547987362434063658, 2.13249797555959133595684337921, 2.85034690542453184245271084515, 3.13105759066402359655423564997, 3.94526305368862862693663543105, 4.12657124781325397932046710664, 4.36750459662573376651309619949, 4.96773852082193860014089291001, 5.59166095201616983637751160015, 5.69234076361403692922051143065, 6.73831694020147380196659511550, 7.17670856704358346602985306090, 7.26726060947591664900913283788, 7.53913952804632410949447415316, 7.967405898665135453413551990507, 8.249449341935105524748386875809, 8.789854742685838728323248138339, 9.184103940456518015149208806706