Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 5 x + 61 x^{2} )^{2}$ |
| $1 + 10 x + 147 x^{2} + 610 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.603713893500$, $\pm0.603713893500$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $44$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $67$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4489$ | $14584761$ | $51162820864$ | $191652875015625$ | $713440932119822929$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $3916$ | $225402$ | $13841908$ | $844712352$ | $51520034086$ | $3142737458352$ | $191707360642468$ | $11694146182646082$ | $713342908307466556$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=25 x^6+56 x^5+46 x^4+46 x^3+34 x^2+13 x+48$
- $y^2=12 x^6+11 x^5+22 x^4+20 x^3+44 x^2+22 x+2$
- $y^2=49 x^6+8 x^5+44 x^4+7 x^3+38 x^2+10 x+12$
- $y^2=16 x^6+47 x^5+9 x^4+17 x^3+52 x^2+50 x+9$
- $y^2=47 x^6+50 x^5+60 x^4+47 x^3+3 x^2+23 x+12$
- $y^2=36 x^6+49 x^5+16 x^4+45 x^3+16 x^2+49 x+36$
- $y^2=x^6+41 x^5+31 x^4+28 x^3+51 x^2+16 x+34$
- $y^2=7 x^6+46 x^5+60 x^4+35 x^3+39 x^2+60 x+55$
- $y^2=48 x^6+11 x^5+47 x^4+38 x^3+47 x^2+11 x+48$
- $y^2=47 x^6+23 x^5+11 x^4+5 x^3+57 x^2+16 x+55$
- $y^2=42 x^6+40 x^5+22 x^4+38 x^3+27 x^2+30 x+4$
- $y^2=2 x^6+23 x^3+7$
- $y^2=50 x^6+59 x^5+35 x^4+5 x^3+31 x^2+6 x+24$
- $y^2=47 x^6+52 x^5+9 x^4+7 x^3+24 x^2+27 x+5$
- $y^2=23 x^6+52 x^5+27 x^4+31 x^3+34 x^2+52 x+38$
- $y^2=44 x^6+9 x^5+34 x^4+54 x^3+48 x^2+42 x+10$
- $y^2=33 x^6+43 x^5+59 x^4+42 x^3+35 x^2+8 x+33$
- $y^2=35 x^6+19 x^5+29 x^4+50 x^3+50 x^2+39 x+26$
- $y^2=19 x^6+35 x^5+51 x^4+25 x^3+18 x^2+41 x+39$
- $y^2=30 x^6+28 x^5+25 x^4+11 x^3+14 x^2+28 x+19$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.f 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-219}) \)$)$ |
Base change
This is a primitive isogeny class.