| L(s) = 1 | + 2·3-s − 2·5-s − 9-s + 2·11-s − 4·15-s + 6·17-s + 10·19-s + 2·23-s + 25-s − 6·27-s + 14·31-s + 4·33-s + 6·37-s + 8·41-s − 8·43-s + 2·45-s + 18·47-s + 12·51-s − 2·53-s − 4·55-s + 20·57-s + 2·59-s − 6·61-s + 14·67-s + 4·69-s − 16·71-s + 18·73-s + ⋯ |
| L(s) = 1 | + 1.15·3-s − 0.894·5-s − 1/3·9-s + 0.603·11-s − 1.03·15-s + 1.45·17-s + 2.29·19-s + 0.417·23-s + 1/5·25-s − 1.15·27-s + 2.51·31-s + 0.696·33-s + 0.986·37-s + 1.24·41-s − 1.21·43-s + 0.298·45-s + 2.62·47-s + 1.68·51-s − 0.274·53-s − 0.539·55-s + 2.64·57-s + 0.260·59-s − 0.768·61-s + 1.71·67-s + 0.481·69-s − 1.89·71-s + 2.10·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.852764170\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.852764170\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.491144051014227641421894937708, −9.201722112760319807680275520998, −8.823801955153168895656416136666, −8.426941603886646841230903057950, −7.85046426055256123653913613611, −7.78174163656873312642551157027, −7.57108896925537878763901356580, −6.96877391641899939804844047838, −6.38521061736004752205058567798, −6.02565676268611011052871224095, −5.46970714943462433861773733396, −5.07369287099320617855733950743, −4.56995359275773683854200454313, −3.94214581971668857832698268013, −3.50672167662009372125494447989, −3.25164076735164495213499023057, −2.68183323877728961001328639015, −2.37952981554633394661957618764, −1.01951597661611130937101806782, −0.981611028434021842742737928419,
0.981611028434021842742737928419, 1.01951597661611130937101806782, 2.37952981554633394661957618764, 2.68183323877728961001328639015, 3.25164076735164495213499023057, 3.50672167662009372125494447989, 3.94214581971668857832698268013, 4.56995359275773683854200454313, 5.07369287099320617855733950743, 5.46970714943462433861773733396, 6.02565676268611011052871224095, 6.38521061736004752205058567798, 6.96877391641899939804844047838, 7.57108896925537878763901356580, 7.78174163656873312642551157027, 7.85046426055256123653913613611, 8.426941603886646841230903057950, 8.823801955153168895656416136666, 9.201722112760319807680275520998, 9.491144051014227641421894937708