Invariants
| Base field: | $\F_{97}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 8 x + 202 x^{2} - 776 x^{3} + 9409 x^{4}$ | 
| Frobenius angles: | $\pm0.387315477000$, $\pm0.481056511250$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.527936.1 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $220$ | 
| Isomorphism classes: | 280 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8828$ | $91775888$ | $834807045884$ | $7835558066054144$ | $73740386035539599868$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $90$ | $9750$ | $914682$ | $88508094$ | $8587104250$ | $832972755990$ | $80798302825050$ | $7837433605654014$ | $760231057842122394$ | $73742412687885817750$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 220 curves (of which all are hyperelliptic):
- $y^2=15 x^6+27 x^5+67 x^4+16 x^3+82 x^2+19 x+19$
- $y^2=45 x^6+5 x^5+76 x^4+32 x^3+64 x^2+48 x$
- $y^2=72 x^6+56 x^5+55 x^4+65 x^3+20 x^2+92$
- $y^2=68 x^6+81 x^5+79 x^4+5 x^3+17 x^2+10 x+62$
- $y^2=69 x^6+49 x^5+84 x^4+60 x^3+48 x^2+15 x+1$
- $y^2=27 x^6+61 x^5+8 x^4+42 x^3+63 x^2+10 x+22$
- $y^2=92 x^6+57 x^5+51 x^4+54 x^3+69 x^2+44 x+52$
- $y^2=75 x^6+17 x^5+69 x^4+29 x^3+56 x^2+56 x+38$
- $y^2=30 x^6+72 x^5+34 x^4+91 x^3+38 x^2+43 x+39$
- $y^2=50 x^6+51 x^5+78 x^4+50 x^3+74 x^2+55 x+32$
- $y^2=91 x^6+60 x^5+36 x^4+46 x^3+47 x^2+57 x+5$
- $y^2=41 x^6+10 x^5+2 x^4+10 x^3+37 x^2+91 x+19$
- $y^2=30 x^6+65 x^5+19 x^4+21 x^3+14 x^2+15 x+68$
- $y^2=61 x^6+84 x^5+42 x^4+95 x^3+24 x^2+71 x+81$
- $y^2=89 x^6+40 x^5+61 x^4+46 x^3+68 x^2+26 x+17$
- $y^2=32 x^6+2 x^5+x^4+81 x^3+27 x^2+92 x+63$
- $y^2=8 x^6+18 x^5+50 x^4+72 x^3+85 x^2+89 x+16$
- $y^2=22 x^6+19 x^5+65 x^4+90 x^3+53 x^2+86$
- $y^2=65 x^6+61 x^5+80 x^4+33 x^3+38 x^2+90 x+68$
- $y^2=80 x^6+87 x^5+3 x^4+30 x^3+92 x^2+68 x+52$
- and 200 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The endomorphism algebra of this simple isogeny class is 4.0.527936.1. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.97.i_hu | $2$ | (not in LMFDB) | 
