L(s) = 1 | + 2·3-s − 2·5-s + 3·9-s + 4·11-s + 12·13-s − 4·15-s + 4·17-s + 6·19-s − 4·23-s + 5·25-s + 10·27-s − 12·29-s − 4·31-s + 8·33-s + 6·37-s + 24·39-s + 8·41-s − 24·43-s − 6·45-s − 12·47-s + 8·51-s − 6·53-s − 8·55-s + 12·57-s + 6·59-s + 6·61-s − 24·65-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s + 9-s + 1.20·11-s + 3.32·13-s − 1.03·15-s + 0.970·17-s + 1.37·19-s − 0.834·23-s + 25-s + 1.92·27-s − 2.22·29-s − 0.718·31-s + 1.39·33-s + 0.986·37-s + 3.84·39-s + 1.24·41-s − 3.65·43-s − 0.894·45-s − 1.75·47-s + 1.12·51-s − 0.824·53-s − 1.07·55-s + 1.58·57-s + 0.781·59-s + 0.768·61-s − 2.97·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.596553608\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.596553608\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.584723174988188546993947756130, −9.103025715228052432040765742437, −8.791331992189608010518749960463, −8.339874052918427469718141485672, −8.166357092110904350859722254701, −7.86194302195830010849926626674, −7.31917379984719753624713250117, −6.79690802514786213284071376250, −6.53748010821381989165391206318, −6.06642648583743839640668251969, −5.54005617839634927804452474857, −5.11228148368691306244638780339, −4.30969781103385698378305403632, −3.83696140143315826391970569702, −3.73004876840804364129526399333, −3.18996788855871813113305332006, −3.08682253748482467970872824353, −1.65089572458930418899172354884, −1.57475572879696196979177965689, −0.886347392982711657919798619307,
0.886347392982711657919798619307, 1.57475572879696196979177965689, 1.65089572458930418899172354884, 3.08682253748482467970872824353, 3.18996788855871813113305332006, 3.73004876840804364129526399333, 3.83696140143315826391970569702, 4.30969781103385698378305403632, 5.11228148368691306244638780339, 5.54005617839634927804452474857, 6.06642648583743839640668251969, 6.53748010821381989165391206318, 6.79690802514786213284071376250, 7.31917379984719753624713250117, 7.86194302195830010849926626674, 8.166357092110904350859722254701, 8.339874052918427469718141485672, 8.791331992189608010518749960463, 9.103025715228052432040765742437, 9.584723174988188546993947756130