L(s) = 1 | − 4·2-s − 2·3-s + 8·4-s − 5-s + 8·6-s − 4·7-s − 8·8-s + 3·9-s + 4·10-s − 5·11-s − 16·12-s − 6·13-s + 16·14-s + 2·15-s − 4·16-s + 4·17-s − 12·18-s − 4·19-s − 8·20-s + 8·21-s + 20·22-s − 4·23-s + 16·24-s + 24·26-s − 10·27-s − 32·28-s − 6·29-s + ⋯ |
L(s) = 1 | − 2.82·2-s − 1.15·3-s + 4·4-s − 0.447·5-s + 3.26·6-s − 1.51·7-s − 2.82·8-s + 9-s + 1.26·10-s − 1.50·11-s − 4.61·12-s − 1.66·13-s + 4.27·14-s + 0.516·15-s − 16-s + 0.970·17-s − 2.82·18-s − 0.917·19-s − 1.78·20-s + 1.74·21-s + 4.26·22-s − 0.834·23-s + 3.26·24-s + 4.70·26-s − 1.92·27-s − 6.04·28-s − 1.11·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 24025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.24429313981002902893675049744, −12.23102215932292454761592692382, −11.22659064179652138012995802571, −11.05922806610700767277356309305, −10.16239271886388953826871307646, −10.16118483424054760471432519820, −9.738242727776993384435802923301, −9.466941140208325930717422566762, −8.558353043680014360499139782255, −7.84321205027008286735775699455, −7.80933866778182779189857014811, −7.11145952898096031435857654309, −6.64169641297630884588931302935, −5.92875796620519153410617600255, −5.05330981387258568658375320057, −4.34848311770244412723584292143, −2.96408161099442873083837533697, −1.88919001711043863429332122796, 0, 0,
1.88919001711043863429332122796, 2.96408161099442873083837533697, 4.34848311770244412723584292143, 5.05330981387258568658375320057, 5.92875796620519153410617600255, 6.64169641297630884588931302935, 7.11145952898096031435857654309, 7.80933866778182779189857014811, 7.84321205027008286735775699455, 8.558353043680014360499139782255, 9.466941140208325930717422566762, 9.738242727776993384435802923301, 10.16118483424054760471432519820, 10.16239271886388953826871307646, 11.05922806610700767277356309305, 11.22659064179652138012995802571, 12.23102215932292454761592692382, 12.24429313981002902893675049744