# Properties

 Label 2.2.e_i Base field $\F_{2}$ Dimension $2$ $p$-rank $0$ Ordinary No Supersingular Yes Simple No Geometrically simple No Primitive Yes Principally polarizable Yes Contains a Jacobian No

## Invariants

 Base field: $\F_{2}$ Dimension: $2$ L-polynomial: $( 1 + 2 x + 2 x^{2} )^{2}$ Frobenius angles: $\pm0.750000000000$, $\pm0.750000000000$ Angle rank: $0$ (numerical) Jacobians: 0

This isogeny class is not simple.

## Newton polygon

This isogeny class is supersingular. $p$-rank: $0$ Slopes: $[1/2, 1/2, 1/2, 1/2]$

## Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 25 25 25 625 625 4225 21025 50625 297025 1050625

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 7 5 1 33 17 65 161 193 577 1025

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2}$
 The isogeny class factors as 1.2.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($$$\Q(\sqrt{-1})$$$)$
Endomorphism algebra over $\overline{\F}_{2}$
 The base change of $A$ to $\F_{2^{4}}$ is 1.16.i 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$.
All geometric endomorphisms are defined over $\F_{2^{4}}$.
Remainder of endomorphism lattice by field
• Endomorphism algebra over $\F_{2^{2}}$  The base change of $A$ to $\F_{2^{2}}$ is 1.4.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($$$\Q(\sqrt{-1})$$$)$

## Base change

This is a primitive isogeny class.

## Twists

Below are some of the twists of this isogeny class.
 Twist Extension Degree Common base change 2.2.ae_i $2$ 2.4.a_i 2.2.a_a $2$ 2.4.a_i 2.2.ac_c $3$ 2.8.ai_bg
Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 2.2.ae_i $2$ 2.4.a_i 2.2.a_a $2$ 2.4.a_i 2.2.ac_c $3$ 2.8.ai_bg 2.2.c_c $6$ 2.64.a_ey 2.2.ac_e $8$ 2.256.acm_chc 2.2.a_ae $8$ 2.256.acm_chc 2.2.a_e $8$ 2.256.acm_chc 2.2.c_e $8$ 2.256.acm_chc 2.2.a_ac $24$ (not in LMFDB) 2.2.a_c $24$ (not in LMFDB)