L(s) = 1 | + 3·5-s + 9-s + 4·13-s + 4·17-s + 4·25-s − 12·37-s + 16·41-s + 3·45-s − 2·49-s + 8·53-s + 8·61-s + 12·65-s + 12·73-s − 8·81-s + 12·85-s + 6·89-s + 8·97-s + 4·101-s − 12·109-s + 4·117-s + 121-s − 3·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯ |
L(s) = 1 | + 1.34·5-s + 1/3·9-s + 1.10·13-s + 0.970·17-s + 4/5·25-s − 1.97·37-s + 2.49·41-s + 0.447·45-s − 2/7·49-s + 1.09·53-s + 1.02·61-s + 1.48·65-s + 1.40·73-s − 8/9·81-s + 1.30·85-s + 0.635·89-s + 0.812·97-s + 0.398·101-s − 1.14·109-s + 0.369·117-s + 1/11·121-s − 0.268·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1548800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1548800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.582634456\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.582634456\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.83290372054141537481868228159, −7.49234572226566462494801206786, −6.91510463035667026824565708484, −6.58534122582832805744775658662, −6.09281676983507833178986300809, −5.67028125142495685849123646544, −5.46179419306824427416170236178, −4.92143830910894627454482145619, −4.28491315989963807497385442400, −3.72182876109990058936915478178, −3.37409523502182206276709906233, −2.58747876159800445047620984190, −2.11882239301548230262866613091, −1.44443560708728800663264729853, −0.883553223544632301582395376375,
0.883553223544632301582395376375, 1.44443560708728800663264729853, 2.11882239301548230262866613091, 2.58747876159800445047620984190, 3.37409523502182206276709906233, 3.72182876109990058936915478178, 4.28491315989963807497385442400, 4.92143830910894627454482145619, 5.46179419306824427416170236178, 5.67028125142495685849123646544, 6.09281676983507833178986300809, 6.58534122582832805744775658662, 6.91510463035667026824565708484, 7.49234572226566462494801206786, 7.83290372054141537481868228159