Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 43 x^{2} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.201036467859$, $\pm0.798963532141$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-11}, \sqrt{185})\) |
Galois group: | $C_2^2$ |
Jacobians: | $124$ |
Isomorphism classes: | 288 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4999$ | $24990001$ | $128100854704$ | $646172078607225$ | $3255243547403335279$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $4956$ | $357912$ | $25428148$ | $1804229352$ | $128101425486$ | $9095120158392$ | $645753497327908$ | $45848500718449032$ | $3255243543796789356$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 124 curves (of which all are hyperelliptic):
- $y^2=56 x^6+16 x^5+4 x^4+15 x^3+14 x^2+54 x+58$
- $y^2=65 x^6+3 x^5+60 x^4+9 x^3+51 x^2+23 x+42$
- $y^2=29 x^6+21 x^5+65 x^4+63 x^3+2 x^2+19 x+10$
- $y^2=25 x^6+14 x^5+23 x^4+66 x^3+24 x^2+39 x+59$
- $y^2=16 x^6+65 x^5+2 x^4+19 x^3+26 x^2+13 x+55$
- $y^2=41 x^6+29 x^5+14 x^4+62 x^3+40 x^2+20 x+30$
- $y^2=9 x^6+x^5+58 x^4+68 x^3+61 x^2+15 x+26$
- $y^2=63 x^6+7 x^5+51 x^4+50 x^3+x^2+34 x+40$
- $y^2=16 x^6+48 x^5+49 x^4+26 x^3+56 x^2+9 x+32$
- $y^2=41 x^6+52 x^5+59 x^4+40 x^3+37 x^2+63 x+11$
- $y^2=15 x^6+9 x^5+70 x^4+38 x^3+65 x^2+30 x+27$
- $y^2=34 x^6+63 x^5+64 x^4+53 x^3+29 x^2+68 x+47$
- $y^2=41 x^6+4 x^5+41 x^4+68 x^3+3 x^2+54 x+5$
- $y^2=62 x^6+29 x^5+70 x^4+49 x^3+24 x^2+49 x+15$
- $y^2=8 x^6+61 x^5+64 x^4+59 x^3+26 x^2+59 x+34$
- $y^2=12 x^6+46 x^5+8 x^4+21 x^3+7 x^2+33 x+33$
- $y^2=11 x^6+38 x^5+58 x^4+43 x^3+45 x^2+9 x+48$
- $y^2=6 x^6+53 x^5+51 x^4+17 x^3+31 x^2+63 x+52$
- $y^2=58 x^6+17 x^5+5 x^4+51 x^3+57 x^2+22 x+20$
- $y^2=51 x^6+48 x^5+35 x^4+2 x^3+44 x^2+12 x+69$
- and 104 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-11}, \sqrt{185})\). |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.abr 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2035}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.a_br | $4$ | (not in LMFDB) |