Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 126 x^{2} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.387164722357$, $\pm0.612835277643$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{10}, \sqrt{-73})\) |
Galois group: | $C_2^2$ |
Jacobians: | $150$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7016$ | $49224256$ | $326939769704$ | $2252093196338176$ | $15516041179959613736$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $7142$ | $571788$ | $47454126$ | $3939040644$ | $326939166038$ | $27136050989628$ | $2252292413169118$ | $186940255267540404$ | $15516041172713374022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 150 curves (of which all are hyperelliptic):
- $y^2=48 x^6+22 x^5+43 x^4+27 x^3+29 x^2+15 x+38$
- $y^2=13 x^6+44 x^5+3 x^4+54 x^3+58 x^2+30 x+76$
- $y^2=48 x^6+23 x^5+33 x^4+45 x^3+50 x^2+48 x+2$
- $y^2=41 x^6+56 x^5+19 x^4+57 x^3+5 x^2+24 x+17$
- $y^2=82 x^6+29 x^5+38 x^4+31 x^3+10 x^2+48 x+34$
- $y^2=27 x^5+17 x^4+40 x^3+26 x^2+19 x+21$
- $y^2=54 x^5+34 x^4+80 x^3+52 x^2+38 x+42$
- $y^2=44 x^6+43 x^5+4 x^4+45 x^3+15 x^2+30 x+50$
- $y^2=5 x^6+3 x^5+8 x^4+7 x^3+30 x^2+60 x+17$
- $y^2=13 x^6+40 x^5+52 x^4+57 x^3+48 x^2+6 x+37$
- $y^2=26 x^6+80 x^5+21 x^4+31 x^3+13 x^2+12 x+74$
- $y^2=39 x^6+62 x^5+44 x^4+53 x^3+71 x^2+65 x+66$
- $y^2=78 x^6+41 x^5+5 x^4+23 x^3+59 x^2+47 x+49$
- $y^2=50 x^6+5 x^5+43 x^4+57 x^3+35 x^2+50 x+66$
- $y^2=73 x^6+9 x^5+16 x^4+6 x^3+11 x^2+7 x+9$
- $y^2=63 x^6+18 x^5+32 x^4+12 x^3+22 x^2+14 x+18$
- $y^2=33 x^6+61 x^5+21 x^4+62 x^3+26 x^2+57 x+30$
- $y^2=10 x^6+10 x^5+24 x^4+65 x^3+65 x^2+27 x+49$
- $y^2=20 x^6+20 x^5+48 x^4+47 x^3+47 x^2+54 x+15$
- $y^2=19 x^5+53 x^4+11 x^3+78 x^2+38 x+54$
- and 130 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{10}, \sqrt{-73})\). |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.ew 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-730}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.a_aew | $4$ | (not in LMFDB) |