L(s) = 1 | + 2·3-s − 5-s + 3·9-s + 6·13-s − 2·15-s + 6·17-s + 19-s + 10·27-s + 3·29-s − 10·31-s + 12·39-s + 12·41-s + 12·43-s − 3·45-s + 6·47-s + 14·49-s + 12·51-s + 6·53-s + 2·57-s + 9·59-s − 61-s − 6·65-s − 10·67-s − 15·71-s − 4·73-s + 79-s + 20·81-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.447·5-s + 9-s + 1.66·13-s − 0.516·15-s + 1.45·17-s + 0.229·19-s + 1.92·27-s + 0.557·29-s − 1.79·31-s + 1.92·39-s + 1.87·41-s + 1.82·43-s − 0.447·45-s + 0.875·47-s + 2·49-s + 1.68·51-s + 0.824·53-s + 0.264·57-s + 1.17·59-s − 0.128·61-s − 0.744·65-s − 1.22·67-s − 1.78·71-s − 0.468·73-s + 0.112·79-s + 20/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.629621126\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.629621126\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.320576061133271340883240942926, −9.249912150525896510589861719807, −8.907286448072998066641353006539, −8.383933919996533490564267593914, −8.283988971398823225397696768145, −7.50255694952984181539576145702, −7.35360239021729654192405019265, −7.28010364615867253685542716583, −6.21864751608379818851955167329, −6.19129092327315671496080255088, −5.38644793421509291664460148444, −5.36164290491031997884685696860, −4.22218636281074385259341468424, −4.09950441157193164190395932380, −3.79503044026715834797865539304, −3.10808541169506490228905237867, −2.76833914382719276988143747557, −2.19739626254719978384070032400, −1.17771923183519051941115026815, −1.00340578533254612489691958624,
1.00340578533254612489691958624, 1.17771923183519051941115026815, 2.19739626254719978384070032400, 2.76833914382719276988143747557, 3.10808541169506490228905237867, 3.79503044026715834797865539304, 4.09950441157193164190395932380, 4.22218636281074385259341468424, 5.36164290491031997884685696860, 5.38644793421509291664460148444, 6.19129092327315671496080255088, 6.21864751608379818851955167329, 7.28010364615867253685542716583, 7.35360239021729654192405019265, 7.50255694952984181539576145702, 8.283988971398823225397696768145, 8.383933919996533490564267593914, 8.907286448072998066641353006539, 9.249912150525896510589861719807, 9.320576061133271340883240942926