Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 13 x + 61 x^{2} )( 1 + 14 x + 61 x^{2} )$ |
$1 + x - 60 x^{2} + 61 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.187058313935$, $\pm0.853724980602$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $111$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3724$ | $13406400$ | $51603482896$ | $191807027193600$ | $713358368110135804$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $63$ | $3601$ | $227346$ | $13853041$ | $844614603$ | $51521216038$ | $3142741298823$ | $191707337131201$ | $11694145857028026$ | $713342910308616601$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 111 curves (of which all are hyperelliptic):
- $y^2=57 x^6+21 x^5+49 x^4+10 x^3+5 x^2+42 x+23$
- $y^2=24 x^6+44 x^5+26 x^4+48 x^3+48 x^2+36 x+60$
- $y^2=2 x^6+4 x^3+33$
- $y^2=39 x^6+24 x^5+44 x^4+18 x^3+14 x^2+35 x+52$
- $y^2=x^6+50 x^5+27 x^4+x^3+6 x^2+49 x+18$
- $y^2=36 x^6+5 x^5+18 x^4+9 x^3+36 x^2+5 x+8$
- $y^2=47 x^6+23 x^5+28 x^4+50 x^3+60 x^2+7 x+29$
- $y^2=11 x^6+4 x^5+30 x^4+17 x^3+17 x^2+12 x+5$
- $y^2=60 x^6+30 x^5+32 x^4+46 x^3+2 x^2+22 x+42$
- $y^2=38 x^6+50 x^4+49 x^3+7 x^2+55 x+8$
- $y^2=42 x^6+20 x^5+42 x^4+14 x^3+52 x^2+58 x+17$
- $y^2=8 x^6+19 x^5+34 x^4+15 x^3+46 x^2+56 x+31$
- $y^2=21 x^6+57 x^5+16 x^4+57 x^3+23 x^2+38 x+33$
- $y^2=58 x^6+36 x^5+29 x^4+42 x^3+4 x^2+30 x+13$
- $y^2=37 x^6+27 x^5+39 x^4+41 x^3+45 x^2+33 x+2$
- $y^2=59 x^6+47 x^5+49 x^4+52 x^3+26 x^2+1$
- $y^2=11 x^6+55 x^5+56 x^4+31 x^3+60 x^2+41 x+21$
- $y^2=40 x^6+2 x^5+54 x^4+24 x^3+40 x^2+38 x+21$
- $y^2=32 x^6+47 x^5+23 x^4+4 x^3+27 x^2+58 x+41$
- $y^2=22 x^6+34 x^5+41 x^4+52 x^3+34 x^2+54 x+12$
- and 91 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.an $\times$ 1.61.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.ha 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.