Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 65 x^{2} - 318 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.256869207534$, $\pm0.590202540867$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
Galois group: | $C_2^2$ |
Jacobians: | $85$ |
Isomorphism classes: | 153 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2551$ | $8160649$ | $22164322684$ | $62285084447481$ | $174915095723246191$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2904$ | $148878$ | $7893700$ | $418261548$ | $22164284238$ | $1174707408300$ | $62259684985924$ | $3299763591802134$ | $174887469747527064$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 85 curves (of which all are hyperelliptic):
- $y^2=3 x^6+26 x^5+42 x^4+52 x^3+15 x^2+52 x+33$
- $y^2=49 x^6+14 x^5+3 x^4+26 x^3+27 x^2+49 x+37$
- $y^2=37 x^6+45 x^5+36 x^4+9 x^3+12 x^2+25 x+49$
- $y^2=4 x^6+31 x^5+38 x^4+51 x^3+20 x^2+34 x+22$
- $y^2=26 x^6+4 x^5+23 x^4+51 x^3+25 x^2+52 x+46$
- $y^2=29 x^6+8 x^5+19 x^4+23 x^3+7 x^2+32 x+27$
- $y^2=3 x^6+51 x^5+28 x^4+32 x^3+28 x^2+41 x+35$
- $y^2=8 x^6+48 x^5+14 x^4+18 x^3+15 x^2+38 x+15$
- $y^2=51 x^6+7 x^5+35 x^4+52 x^3+13 x^2+38 x+48$
- $y^2=17 x^6+18 x^5+28 x^4+30 x^3+34 x^2+31 x+17$
- $y^2=28 x^6+21 x^5+48 x^4+34 x^3+27 x^2+27 x+35$
- $y^2=42 x^6+9 x^5+43 x^4+50 x^3+18 x^2+37 x+50$
- $y^2=44 x^6+52 x^5+20 x^3+10 x^2+10 x+27$
- $y^2=14 x^6+52 x^5+52 x^4+37 x^3+2 x^2+32 x+14$
- $y^2=52 x^6+28 x^5+42 x^4+11 x^3+10 x^2+48 x+11$
- $y^2=4 x^6+44 x^5+22 x^4+44 x^3+46 x^2+15 x+39$
- $y^2=51 x^6+51 x^4+45 x^3+27 x^2+33 x+35$
- $y^2=36 x^6+12 x^5+32 x^4+9 x^3+19 x^2+10 x+21$
- $y^2=24 x^6+39 x^5+24 x^4+2 x^3+39 x^2+25 x+21$
- $y^2=27 x^6+20 x^5+22 x^4+34 x^3+31 x^2+3 x+9$
- and 65 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{6}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-3})\). |
The base change of $A$ to $\F_{53^{6}}$ is 1.22164361129.acews 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
- Endomorphism algebra over $\F_{53^{2}}$
The base change of $A$ to $\F_{53^{2}}$ is the simple isogeny class 2.2809.dq_ixv and its endomorphism algebra is \(\Q(\sqrt{2}, \sqrt{-3})\). - Endomorphism algebra over $\F_{53^{3}}$
The base change of $A$ to $\F_{53^{3}}$ is the simple isogeny class 2.148877.a_acews and its endomorphism algebra is \(\Q(\sqrt{2}, \sqrt{-3})\).
Base change
This is a primitive isogeny class.