# Stored data for abelian variety isogeny class 2.53.ag_cn, downloaded from the LMFDB on 14 September 2025. {"abvar_count": 2551, "abvar_counts": [2551, 8160649, 22164322684, 62285084447481, 174915095723246191, 491257200040476963856, 1379941878583702609330711, 3876268712332393795045926249, 10888439761782916318288870105756, 30585627182770199310933694916038249], "abvar_counts_str": "2551 8160649 22164322684 62285084447481 174915095723246191 491257200040476963856 1379941878583702609330711 3876268712332393795045926249 10888439761782916318288870105756 30585627182770199310933694916038249 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 1, "angle_rank": 1, "angles": [0.256869207533703, 0.590202540867037], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 48, "curve_counts": [48, 2904, 148878, 7893700, 418261548, 22164284238, 1174707408300, 62259684985924, 3299763591802134, 174887469747527064], "curve_counts_str": "48 2904 148878 7893700 418261548 22164284238 1174707408300 62259684985924 3299763591802134 174887469747527064 ", "curves": ["y^2=3*x^6+26*x^5+42*x^4+52*x^3+15*x^2+52*x+33", "y^2=49*x^6+14*x^5+3*x^4+26*x^3+27*x^2+49*x+37", "y^2=37*x^6+45*x^5+36*x^4+9*x^3+12*x^2+25*x+49", "y^2=4*x^6+31*x^5+38*x^4+51*x^3+20*x^2+34*x+22", "y^2=26*x^6+4*x^5+23*x^4+51*x^3+25*x^2+52*x+46", "y^2=29*x^6+8*x^5+19*x^4+23*x^3+7*x^2+32*x+27", "y^2=3*x^6+51*x^5+28*x^4+32*x^3+28*x^2+41*x+35", "y^2=8*x^6+48*x^5+14*x^4+18*x^3+15*x^2+38*x+15", "y^2=51*x^6+7*x^5+35*x^4+52*x^3+13*x^2+38*x+48", "y^2=17*x^6+18*x^5+28*x^4+30*x^3+34*x^2+31*x+17", "y^2=28*x^6+21*x^5+48*x^4+34*x^3+27*x^2+27*x+35", "y^2=42*x^6+9*x^5+43*x^4+50*x^3+18*x^2+37*x+50", "y^2=44*x^6+52*x^5+20*x^3+10*x^2+10*x+27", "y^2=14*x^6+52*x^5+52*x^4+37*x^3+2*x^2+32*x+14", "y^2=52*x^6+28*x^5+42*x^4+11*x^3+10*x^2+48*x+11", "y^2=4*x^6+44*x^5+22*x^4+44*x^3+46*x^2+15*x+39", "y^2=51*x^6+51*x^4+45*x^3+27*x^2+33*x+35", "y^2=36*x^6+12*x^5+32*x^4+9*x^3+19*x^2+10*x+21", "y^2=24*x^6+39*x^5+24*x^4+2*x^3+39*x^2+25*x+21", "y^2=27*x^6+20*x^5+22*x^4+34*x^3+31*x^2+3*x+9", "y^2=2*x^6+21*x^5+31*x^4+4*x^3+34*x^2+43*x+6", "y^2=34*x^6+14*x^5+47*x^4+24*x^3+33*x^2+31*x+52", "y^2=8*x^6+17*x^5+36*x^4+31*x^3+28*x^2+18*x+13", "y^2=21*x^6+8*x^5+48*x^4+16*x^3+45*x^2+19*x+19", "y^2=13*x^6+24*x^5+25*x^4+17*x^3+45*x^2+15*x+12", "y^2=30*x^6+9*x^5+47*x^4+50*x^3+20*x^2+51*x+35", "y^2=32*x^6+30*x^5+25*x^4+10*x^3+16*x^2+47*x+38", "y^2=29*x^6+39*x^5+33*x^4+37*x^3+39*x^2+46*x+48", "y^2=37*x^6+42*x^5+51*x^4+7*x^3+49*x^2+34*x+22", "y^2=14*x^6+38*x^5+14*x^4+x^3+35*x^2+19*x+16", "y^2=14*x^6+44*x^5+41*x^4+27*x^3+51*x^2+36*x+39", "y^2=32*x^6+50*x^5+26*x^4+21*x^3+2*x^2+16*x+47", "y^2=37*x^6+49*x^5+25*x^4+30*x^3+13*x^2+6*x+34", "y^2=15*x^6+51*x^5+50*x^4+4*x^3+5*x^2+33*x+48", "y^2=41*x^6+23*x^5+27*x^4+23*x^3+8*x^2+30*x+28", "y^2=37*x^6+29*x^5+26*x^4+49*x^2+5*x+52", "y^2=10*x^6+16*x^5+16*x^4+48*x^3+32*x^2+51*x+43", "y^2=44*x^6+47*x^5+7*x^4+47*x^3+4*x^2+14*x+50", "y^2=16*x^6+27*x^5+24*x^4+30*x^2+46*x+35", "y^2=50*x^6+29*x^5+32*x^4+9*x^3+42*x^2+6*x+14", "y^2=8*x^6+45*x^4+40*x^3+41*x^2+7*x+32", "y^2=32*x^6+46*x^5+49*x^4+4*x^3+27*x^2+19*x+32", "y^2=21*x^6+41*x^5+x^4+15*x^3+13*x^2+27*x+49", "y^2=13*x^6+14*x^5+13*x^4+14*x^3+31*x^2+41*x+43", "y^2=42*x^6+51*x^5+50*x^4+42*x^3+36*x^2+31*x+48", "y^2=37*x^6+21*x^5+35*x^4+32*x^3+28*x^2+25*x+42", "y^2=32*x^6+30*x^5+x^4+12*x^3+36*x^2+23*x+28", "y^2=32*x^6+28*x^5+29*x^4+42*x^3+28*x^2+8*x+44", "y^2=37*x^6+28*x^5+47*x^4+22*x^3+45*x^2+46*x+38", "y^2=45*x^6+26*x^5+19*x^4+x^3+18*x^2+22*x+25", "y^2=13*x^6+36*x^5+14*x^4+31*x^3+29*x^2+42*x+13", "y^2=27*x^6+8*x^5+27*x^3+50*x^2+2*x+16", "y^2=48*x^6+24*x^5+44*x^4+36*x^3+47*x^2+14*x+43", "y^2=18*x^6+7*x^5+43*x^4+27*x^3+23*x^2+42*x+48", "y^2=21*x^6+9*x^5+46*x^4+26*x^3+13*x^2+48*x+39", "y^2=48*x^6+7*x^5+26*x^4+31*x^3+8*x^2+4*x+39", "y^2=33*x^6+2*x^5+47*x^4+42*x^3+20*x^2+52*x+31", "y^2=24*x^6+12*x^5+12*x^3+23*x^2+41*x+20", "y^2=x^6+22*x^5+29*x^4+43*x^3+18*x^2+44*x+38", "y^2=20*x^6+24*x^5+16*x^4+4*x^3+28*x^2+27*x+34", "y^2=41*x^6+46*x^5+9*x^4+20*x^3+x^2+39*x+39", "y^2=48*x^6+23*x^5+23*x^4+29*x^3+41*x^2+46*x+8", "y^2=42*x^6+49*x^5+22*x^4+7*x^3+36*x^2+44*x+42", "y^2=43*x^6+32*x^5+19*x^4+46*x^3+32*x^2+19*x+20", "y^2=44*x^6+2*x^5+15*x^4+36*x^3+8*x^2+x+7", "y^2=17*x^6+34*x^5+4*x^4+5*x^3+21*x^2+3*x+20", "y^2=43*x^6+48*x^5+49*x^4+43*x^3+21*x^2+26*x+50", "y^2=24*x^6+13*x^5+27*x^4+12*x^3+21*x^2+11*x+37", "y^2=17*x^6+46*x^5+14*x^4+36*x^3+14*x^2+47*x+22", "y^2=38*x^6+23*x^5+49*x^4+20*x^3+39*x^2+46*x+19", "y^2=48*x^6+33*x^5+21*x^4+33*x^3+18*x^2+3*x+13", "y^2=25*x^6+41*x^5+27*x^4+10*x^3+3*x^2+47*x+50", "y^2=50*x^6+4*x^5+x^4+13*x^3+46*x^2+22*x+43", "y^2=18*x^6+19*x^5+7*x^4+6*x^3+22*x^2+28*x+24", "y^2=29*x^6+29*x^5+3*x^4+35*x^3+43*x^2+52*x+33", "y^2=10*x^6+36*x^5+48*x^4+44*x^3+17*x^2+9*x+18", "y^2=19*x^6+48*x^5+20*x^4+43*x^3+12*x^2+13*x+19", "y^2=35*x^6+20*x^5+31*x^4+26*x^3+40*x^2+13*x+44", "y^2=14*x^6+41*x^5+9*x^4+12*x^3+41*x^2+29*x+10", "y^2=7*x^6+18*x^5+36*x^4+46*x^3+46*x^2+19*x+51", "y^2=5*x^6+50*x^5+16*x^4+21*x^3+34*x^2+31*x+43", "y^2=28*x^6+23*x^4+8*x^3+14*x^2+37*x+2", "y^2=13*x^6+x^5+16*x^4+35*x^3+30*x^2+39*x+33", "y^2=49*x^6+6*x^5+20*x^4+42*x^3+8*x^2+5*x+27", "y^2=14*x^6+13*x^5+28*x^4+39*x^3+35*x^2+13*x+38"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 6, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 6, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.24.1"], "geometric_splitting_field": "2.0.24.1", "geometric_splitting_polynomials": [[6, 0, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 85, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 85, "label": "2.53.ag_cn", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 24, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.576.2"], "p": 53, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 2, 1, 2], [1, 7, 1, 56], [1, 3, 1, 2]], "poly": [1, -6, 65, -318, 2809], "poly_str": "1 -6 65 -318 2809 ", "primitive_models": [], "principal_polarization_count": 85, "q": 53, "real_poly": [1, -6, -41], "simple_distinct": ["2.53.ag_cn"], "simple_factors": ["2.53.ag_cnA"], "simple_multiplicities": [1], "singular_primes": ["7,-5*F^2-5*F+2", "5,3*F^2-17*F-13*V+78"], "size": 153, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.576.2", "splitting_polynomials": [[4, 0, 2, 0, 1]], "twist_count": 6, "twists": [["2.53.a_adq", "2.148877.a_acews", 3], ["2.53.g_cn", "2.148877.a_acews", 3], ["2.53.a_adq", "2.22164361129.aejtk_fshizzwo", 6], ["2.53.a_dq", "2.491258904256726154641.krlbypzg_brsbclpugtkesfzy", 12], ["2.53.au_hs", "2.241335311011519234780052665404754645838881.abamczhxskgcmsypo_lfcmjeenqatwhwytcdtgwjigypxwbm", 24], ["2.53.u_hs", "2.241335311011519234780052665404754645838881.abamczhxskgcmsypo_lfcmjeenqatwhwytcdtgwjigypxwbm", 24]], "weak_equivalence_count": 6, "zfv_index": 1225, "zfv_index_factorization": [[5, 2], [7, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 112, "zfv_plus_index": 5, "zfv_plus_index_factorization": [[5, 1]], "zfv_plus_norm": 21609, "zfv_singular_count": 4, "zfv_singular_primes": ["7,-5*F^2-5*F+2", "5,3*F^2-17*F-13*V+78"]}