Properties

Label 1520.2.bq.i.31.1
Level $1520$
Weight $2$
Character 1520.31
Analytic conductor $12.137$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1520,2,Mod(31,1520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1520, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1520.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.bq (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,-1,0,0,0,-1,0,0,0,6,0,2,0,6,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1520.31
Dual form 1520.2.bq.i.1471.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(-0.500000 + 0.866025i) q^{9} -1.73205i q^{11} +(3.00000 + 1.73205i) q^{13} +(1.00000 - 1.73205i) q^{15} +(3.00000 + 5.19615i) q^{17} +(0.500000 - 4.33013i) q^{19} +(-0.500000 + 0.866025i) q^{25} +4.00000 q^{27} +(1.50000 + 0.866025i) q^{29} -5.00000 q^{31} +(3.00000 - 1.73205i) q^{33} +6.92820i q^{37} +6.92820i q^{39} +(6.00000 - 3.46410i) q^{41} +(6.00000 - 3.46410i) q^{43} +1.00000 q^{45} +(3.00000 + 1.73205i) q^{47} +7.00000 q^{49} +(-6.00000 + 10.3923i) q^{51} +(3.00000 + 1.73205i) q^{53} +(-1.50000 + 0.866025i) q^{55} +(8.00000 - 3.46410i) q^{57} +(4.50000 + 7.79423i) q^{59} +(-0.500000 + 0.866025i) q^{61} -3.46410i q^{65} +(-5.00000 + 8.66025i) q^{67} +(-7.50000 - 12.9904i) q^{71} +(-2.00000 - 3.46410i) q^{73} -2.00000 q^{75} +(0.500000 + 0.866025i) q^{79} +(5.50000 + 9.52628i) q^{81} +6.92820i q^{83} +(3.00000 - 5.19615i) q^{85} +3.46410i q^{87} +(10.5000 + 6.06218i) q^{89} +(-5.00000 - 8.66025i) q^{93} +(-4.00000 + 1.73205i) q^{95} +(-12.0000 + 6.92820i) q^{97} +(1.50000 + 0.866025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - q^{5} - q^{9} + 6 q^{13} + 2 q^{15} + 6 q^{17} + q^{19} - q^{25} + 8 q^{27} + 3 q^{29} - 10 q^{31} + 6 q^{33} + 12 q^{41} + 12 q^{43} + 2 q^{45} + 6 q^{47} + 14 q^{49} - 12 q^{51} + 6 q^{53}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.73205i 0.577350 + 1.00000i 0.995782 + 0.0917517i \(0.0292466\pi\)
−0.418432 + 0.908248i \(0.637420\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.73205i 0.522233i −0.965307 0.261116i \(-0.915909\pi\)
0.965307 0.261116i \(-0.0840907\pi\)
\(12\) 0 0
\(13\) 3.00000 + 1.73205i 0.832050 + 0.480384i 0.854554 0.519362i \(-0.173830\pi\)
−0.0225039 + 0.999747i \(0.507164\pi\)
\(14\) 0 0
\(15\) 1.00000 1.73205i 0.258199 0.447214i
\(16\) 0 0
\(17\) 3.00000 + 5.19615i 0.727607 + 1.26025i 0.957892 + 0.287129i \(0.0927008\pi\)
−0.230285 + 0.973123i \(0.573966\pi\)
\(18\) 0 0
\(19\) 0.500000 4.33013i 0.114708 0.993399i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 1.50000 + 0.866025i 0.278543 + 0.160817i 0.632764 0.774345i \(-0.281920\pi\)
−0.354221 + 0.935162i \(0.615254\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 0 0
\(33\) 3.00000 1.73205i 0.522233 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.92820i 1.13899i 0.821995 + 0.569495i \(0.192861\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 6.92820i 1.10940i
\(40\) 0 0
\(41\) 6.00000 3.46410i 0.937043 0.541002i 0.0480106 0.998847i \(-0.484712\pi\)
0.889032 + 0.457845i \(0.151379\pi\)
\(42\) 0 0
\(43\) 6.00000 3.46410i 0.914991 0.528271i 0.0329577 0.999457i \(-0.489507\pi\)
0.882034 + 0.471186i \(0.156174\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 3.00000 + 1.73205i 0.437595 + 0.252646i 0.702577 0.711608i \(-0.252033\pi\)
−0.264982 + 0.964253i \(0.585366\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) −6.00000 + 10.3923i −0.840168 + 1.45521i
\(52\) 0 0
\(53\) 3.00000 + 1.73205i 0.412082 + 0.237915i 0.691684 0.722200i \(-0.256869\pi\)
−0.279602 + 0.960116i \(0.590203\pi\)
\(54\) 0 0
\(55\) −1.50000 + 0.866025i −0.202260 + 0.116775i
\(56\) 0 0
\(57\) 8.00000 3.46410i 1.05963 0.458831i
\(58\) 0 0
\(59\) 4.50000 + 7.79423i 0.585850 + 1.01472i 0.994769 + 0.102151i \(0.0325726\pi\)
−0.408919 + 0.912571i \(0.634094\pi\)
\(60\) 0 0
\(61\) −0.500000 + 0.866025i −0.0640184 + 0.110883i −0.896258 0.443533i \(-0.853725\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.46410i 0.429669i
\(66\) 0 0
\(67\) −5.00000 + 8.66025i −0.610847 + 1.05802i 0.380251 + 0.924883i \(0.375838\pi\)
−0.991098 + 0.133135i \(0.957496\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.50000 12.9904i −0.890086 1.54167i −0.839771 0.542941i \(-0.817311\pi\)
−0.0503155 0.998733i \(-0.516023\pi\)
\(72\) 0 0
\(73\) −2.00000 3.46410i −0.234082 0.405442i 0.724923 0.688830i \(-0.241875\pi\)
−0.959006 + 0.283387i \(0.908542\pi\)
\(74\) 0 0
\(75\) −2.00000 −0.230940
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.500000 + 0.866025i 0.0562544 + 0.0974355i 0.892781 0.450490i \(-0.148751\pi\)
−0.836527 + 0.547926i \(0.815418\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 0 0
\(83\) 6.92820i 0.760469i 0.924890 + 0.380235i \(0.124157\pi\)
−0.924890 + 0.380235i \(0.875843\pi\)
\(84\) 0 0
\(85\) 3.00000 5.19615i 0.325396 0.563602i
\(86\) 0 0
\(87\) 3.46410i 0.371391i
\(88\) 0 0
\(89\) 10.5000 + 6.06218i 1.11300 + 0.642590i 0.939604 0.342263i \(-0.111193\pi\)
0.173394 + 0.984853i \(0.444527\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.00000 8.66025i −0.518476 0.898027i
\(94\) 0 0
\(95\) −4.00000 + 1.73205i −0.410391 + 0.177705i
\(96\) 0 0
\(97\) −12.0000 + 6.92820i −1.21842 + 0.703452i −0.964579 0.263795i \(-0.915026\pi\)
−0.253837 + 0.967247i \(0.581693\pi\)
\(98\) 0 0
\(99\) 1.50000 + 0.866025i 0.150756 + 0.0870388i
\(100\) 0 0
\(101\) 1.50000 2.59808i 0.149256 0.258518i −0.781697 0.623658i \(-0.785646\pi\)
0.930953 + 0.365140i \(0.118979\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −13.5000 + 7.79423i −1.29307 + 0.746552i −0.979196 0.202915i \(-0.934959\pi\)
−0.313869 + 0.949466i \(0.601625\pi\)
\(110\) 0 0
\(111\) −12.0000 + 6.92820i −1.13899 + 0.657596i
\(112\) 0 0
\(113\) 17.3205i 1.62938i −0.579899 0.814688i \(-0.696908\pi\)
0.579899 0.814688i \(-0.303092\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.00000 + 1.73205i −0.277350 + 0.160128i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.00000 0.727273
\(122\) 0 0
\(123\) 12.0000 + 6.92820i 1.08200 + 0.624695i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 1.00000 1.73205i 0.0887357 0.153695i −0.818241 0.574875i \(-0.805051\pi\)
0.906977 + 0.421180i \(0.138384\pi\)
\(128\) 0 0
\(129\) 12.0000 + 6.92820i 1.05654 + 0.609994i
\(130\) 0 0
\(131\) −9.00000 + 5.19615i −0.786334 + 0.453990i −0.838670 0.544640i \(-0.816666\pi\)
0.0523366 + 0.998630i \(0.483333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.00000 3.46410i −0.172133 0.298142i
\(136\) 0 0
\(137\) 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i \(-0.662010\pi\)
0.999893 0.0146279i \(-0.00465636\pi\)
\(138\) 0 0
\(139\) −9.00000 5.19615i −0.763370 0.440732i 0.0671344 0.997744i \(-0.478614\pi\)
−0.830504 + 0.557012i \(0.811948\pi\)
\(140\) 0 0
\(141\) 6.92820i 0.583460i
\(142\) 0 0
\(143\) 3.00000 5.19615i 0.250873 0.434524i
\(144\) 0 0
\(145\) 1.73205i 0.143839i
\(146\) 0 0
\(147\) 7.00000 + 12.1244i 0.577350 + 1.00000i
\(148\) 0 0
\(149\) −7.50000 12.9904i −0.614424 1.06421i −0.990485 0.137619i \(-0.956055\pi\)
0.376061 0.926595i \(-0.377278\pi\)
\(150\) 0 0
\(151\) −19.0000 −1.54620 −0.773099 0.634285i \(-0.781294\pi\)
−0.773099 + 0.634285i \(0.781294\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 2.50000 + 4.33013i 0.200805 + 0.347804i
\(156\) 0 0
\(157\) 7.00000 + 12.1244i 0.558661 + 0.967629i 0.997609 + 0.0691164i \(0.0220180\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) 6.92820i 0.549442i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.46410i 0.271329i −0.990755 0.135665i \(-0.956683\pi\)
0.990755 0.135665i \(-0.0433170\pi\)
\(164\) 0 0
\(165\) −3.00000 1.73205i −0.233550 0.134840i
\(166\) 0 0
\(167\) 6.00000 10.3923i 0.464294 0.804181i −0.534875 0.844931i \(-0.679641\pi\)
0.999169 + 0.0407502i \(0.0129748\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) 3.50000 + 2.59808i 0.267652 + 0.198680i
\(172\) 0 0
\(173\) −12.0000 + 6.92820i −0.912343 + 0.526742i −0.881184 0.472773i \(-0.843253\pi\)
−0.0311588 + 0.999514i \(0.509920\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −9.00000 + 15.5885i −0.676481 + 1.17170i
\(178\) 0 0
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) 0 0
\(181\) 12.0000 + 6.92820i 0.891953 + 0.514969i 0.874581 0.484880i \(-0.161137\pi\)
0.0173722 + 0.999849i \(0.494470\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) 6.00000 3.46410i 0.441129 0.254686i
\(186\) 0 0
\(187\) 9.00000 5.19615i 0.658145 0.379980i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.1244i 0.877288i −0.898661 0.438644i \(-0.855459\pi\)
0.898661 0.438644i \(-0.144541\pi\)
\(192\) 0 0
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 6.00000 3.46410i 0.429669 0.248069i
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −4.50000 2.59808i −0.318997 0.184173i 0.331949 0.943297i \(-0.392294\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(200\) 0 0
\(201\) −20.0000 −1.41069
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.00000 3.46410i −0.419058 0.241943i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.50000 0.866025i −0.518786 0.0599042i
\(210\) 0 0
\(211\) −0.500000 0.866025i −0.0344214 0.0596196i 0.848301 0.529514i \(-0.177626\pi\)
−0.882723 + 0.469894i \(0.844292\pi\)
\(212\) 0 0
\(213\) 15.0000 25.9808i 1.02778 1.78017i
\(214\) 0 0
\(215\) −6.00000 3.46410i −0.409197 0.236250i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 4.00000 6.92820i 0.270295 0.468165i
\(220\) 0 0
\(221\) 20.7846i 1.39812i
\(222\) 0 0
\(223\) −4.00000 6.92820i −0.267860 0.463947i 0.700449 0.713702i \(-0.252983\pi\)
−0.968309 + 0.249756i \(0.919650\pi\)
\(224\) 0 0
\(225\) −0.500000 0.866025i −0.0333333 0.0577350i
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −13.0000 −0.859064 −0.429532 0.903052i \(-0.641321\pi\)
−0.429532 + 0.903052i \(0.641321\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.00000 15.5885i −0.589610 1.02123i −0.994283 0.106773i \(-0.965948\pi\)
0.404674 0.914461i \(-0.367385\pi\)
\(234\) 0 0
\(235\) 3.46410i 0.225973i
\(236\) 0 0
\(237\) −1.00000 + 1.73205i −0.0649570 + 0.112509i
\(238\) 0 0
\(239\) 8.66025i 0.560185i −0.959973 0.280093i \(-0.909635\pi\)
0.959973 0.280093i \(-0.0903652\pi\)
\(240\) 0 0
\(241\) 4.50000 + 2.59808i 0.289870 + 0.167357i 0.637883 0.770133i \(-0.279810\pi\)
−0.348013 + 0.937490i \(0.613143\pi\)
\(242\) 0 0
\(243\) −5.00000 + 8.66025i −0.320750 + 0.555556i
\(244\) 0 0
\(245\) −3.50000 6.06218i −0.223607 0.387298i
\(246\) 0 0
\(247\) 9.00000 12.1244i 0.572656 0.771454i
\(248\) 0 0
\(249\) −12.0000 + 6.92820i −0.760469 + 0.439057i
\(250\) 0 0
\(251\) 4.50000 + 2.59808i 0.284037 + 0.163989i 0.635250 0.772307i \(-0.280897\pi\)
−0.351212 + 0.936296i \(0.614230\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 12.0000 0.751469
\(256\) 0 0
\(257\) 9.00000 + 5.19615i 0.561405 + 0.324127i 0.753709 0.657208i \(-0.228263\pi\)
−0.192304 + 0.981335i \(0.561596\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.50000 + 0.866025i −0.0928477 + 0.0536056i
\(262\) 0 0
\(263\) 21.0000 12.1244i 1.29492 0.747620i 0.315394 0.948961i \(-0.397863\pi\)
0.979521 + 0.201341i \(0.0645299\pi\)
\(264\) 0 0
\(265\) 3.46410i 0.212798i
\(266\) 0 0
\(267\) 24.2487i 1.48400i
\(268\) 0 0
\(269\) 13.5000 7.79423i 0.823110 0.475223i −0.0283781 0.999597i \(-0.509034\pi\)
0.851488 + 0.524375i \(0.175701\pi\)
\(270\) 0 0
\(271\) 16.5000 9.52628i 1.00230 0.578680i 0.0933746 0.995631i \(-0.470235\pi\)
0.908929 + 0.416951i \(0.136901\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.50000 + 0.866025i 0.0904534 + 0.0522233i
\(276\) 0 0
\(277\) −16.0000 −0.961347 −0.480673 0.876900i \(-0.659608\pi\)
−0.480673 + 0.876900i \(0.659608\pi\)
\(278\) 0 0
\(279\) 2.50000 4.33013i 0.149671 0.259238i
\(280\) 0 0
\(281\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) 0 0
\(283\) 27.0000 15.5885i 1.60498 0.926638i 0.614514 0.788906i \(-0.289352\pi\)
0.990470 0.137732i \(-0.0439811\pi\)
\(284\) 0 0
\(285\) −7.00000 5.19615i −0.414644 0.307794i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) −24.0000 13.8564i −1.40690 0.812277i
\(292\) 0 0
\(293\) 6.92820i 0.404750i −0.979308 0.202375i \(-0.935134\pi\)
0.979308 0.202375i \(-0.0648660\pi\)
\(294\) 0 0
\(295\) 4.50000 7.79423i 0.262000 0.453798i
\(296\) 0 0
\(297\) 6.92820i 0.402015i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 6.00000 0.344691
\(304\) 0 0
\(305\) 1.00000 0.0572598
\(306\) 0 0
\(307\) −7.00000 12.1244i −0.399511 0.691974i 0.594154 0.804351i \(-0.297487\pi\)
−0.993666 + 0.112377i \(0.964153\pi\)
\(308\) 0 0
\(309\) −4.00000 6.92820i −0.227552 0.394132i
\(310\) 0 0
\(311\) 3.46410i 0.196431i 0.995165 + 0.0982156i \(0.0313135\pi\)
−0.995165 + 0.0982156i \(0.968687\pi\)
\(312\) 0 0
\(313\) 13.0000 22.5167i 0.734803 1.27272i −0.220006 0.975499i \(-0.570608\pi\)
0.954810 0.297218i \(-0.0960589\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000 + 10.3923i 1.01098 + 0.583690i 0.911479 0.411347i \(-0.134942\pi\)
0.0995021 + 0.995037i \(0.468275\pi\)
\(318\) 0 0
\(319\) 1.50000 2.59808i 0.0839839 0.145464i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.0000 10.3923i 1.33540 0.578243i
\(324\) 0 0
\(325\) −3.00000 + 1.73205i −0.166410 + 0.0960769i
\(326\) 0 0
\(327\) −27.0000 15.5885i −1.49310 0.862044i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) −6.00000 3.46410i −0.328798 0.189832i
\(334\) 0 0
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) −18.0000 + 10.3923i −0.980522 + 0.566105i −0.902428 0.430841i \(-0.858217\pi\)
−0.0780946 + 0.996946i \(0.524884\pi\)
\(338\) 0 0
\(339\) 30.0000 17.3205i 1.62938 0.940721i
\(340\) 0 0
\(341\) 8.66025i 0.468979i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −18.0000 + 10.3923i −0.966291 + 0.557888i −0.898103 0.439784i \(-0.855055\pi\)
−0.0681872 + 0.997673i \(0.521722\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 12.0000 + 6.92820i 0.640513 + 0.369800i
\(352\) 0 0
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 0 0
\(355\) −7.50000 + 12.9904i −0.398059 + 0.689458i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.0000 + 15.5885i −1.42501 + 0.822727i −0.996721 0.0809166i \(-0.974215\pi\)
−0.428285 + 0.903644i \(0.640882\pi\)
\(360\) 0 0
\(361\) −18.5000 4.33013i −0.973684 0.227901i
\(362\) 0 0
\(363\) 8.00000 + 13.8564i 0.419891 + 0.727273i
\(364\) 0 0
\(365\) −2.00000 + 3.46410i −0.104685 + 0.181319i
\(366\) 0 0
\(367\) −30.0000 17.3205i −1.56599 0.904123i −0.996630 0.0820332i \(-0.973859\pi\)
−0.569358 0.822090i \(-0.692808\pi\)
\(368\) 0 0
\(369\) 6.92820i 0.360668i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 13.8564i 0.717458i 0.933442 + 0.358729i \(0.116790\pi\)
−0.933442 + 0.358729i \(0.883210\pi\)
\(374\) 0 0
\(375\) 1.00000 + 1.73205i 0.0516398 + 0.0894427i
\(376\) 0 0
\(377\) 3.00000 + 5.19615i 0.154508 + 0.267615i
\(378\) 0 0
\(379\) −13.0000 −0.667765 −0.333883 0.942615i \(-0.608359\pi\)
−0.333883 + 0.942615i \(0.608359\pi\)
\(380\) 0 0
\(381\) 4.00000 0.204926
\(382\) 0 0
\(383\) −3.00000 5.19615i −0.153293 0.265511i 0.779143 0.626846i \(-0.215654\pi\)
−0.932436 + 0.361335i \(0.882321\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.92820i 0.352180i
\(388\) 0 0
\(389\) 13.5000 23.3827i 0.684477 1.18555i −0.289124 0.957292i \(-0.593364\pi\)
0.973601 0.228257i \(-0.0733028\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −18.0000 10.3923i −0.907980 0.524222i
\(394\) 0 0
\(395\) 0.500000 0.866025i 0.0251577 0.0435745i
\(396\) 0 0
\(397\) −10.0000 17.3205i −0.501886 0.869291i −0.999998 0.00217869i \(-0.999307\pi\)
0.498112 0.867113i \(-0.334027\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −22.5000 + 12.9904i −1.12360 + 0.648709i −0.942317 0.334723i \(-0.891357\pi\)
−0.181280 + 0.983432i \(0.558024\pi\)
\(402\) 0 0
\(403\) −15.0000 8.66025i −0.747203 0.431398i
\(404\) 0 0
\(405\) 5.50000 9.52628i 0.273297 0.473365i
\(406\) 0 0
\(407\) 12.0000 0.594818
\(408\) 0 0
\(409\) 25.5000 + 14.7224i 1.26089 + 0.727977i 0.973247 0.229759i \(-0.0737939\pi\)
0.287646 + 0.957737i \(0.407127\pi\)
\(410\) 0 0
\(411\) 24.0000 1.18383
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6.00000 3.46410i 0.294528 0.170046i
\(416\) 0 0
\(417\) 20.7846i 1.01783i
\(418\) 0 0
\(419\) 12.1244i 0.592314i 0.955139 + 0.296157i \(0.0957051\pi\)
−0.955139 + 0.296157i \(0.904295\pi\)
\(420\) 0 0
\(421\) −10.5000 + 6.06218i −0.511739 + 0.295452i −0.733548 0.679638i \(-0.762137\pi\)
0.221809 + 0.975090i \(0.428804\pi\)
\(422\) 0 0
\(423\) −3.00000 + 1.73205i −0.145865 + 0.0842152i
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 12.0000 0.579365
\(430\) 0 0
\(431\) −10.5000 + 18.1865i −0.505767 + 0.876014i 0.494211 + 0.869342i \(0.335457\pi\)
−0.999978 + 0.00667224i \(0.997876\pi\)
\(432\) 0 0
\(433\) −30.0000 17.3205i −1.44171 0.832370i −0.443744 0.896153i \(-0.646350\pi\)
−0.997964 + 0.0637830i \(0.979683\pi\)
\(434\) 0 0
\(435\) 3.00000 1.73205i 0.143839 0.0830455i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −8.50000 14.7224i −0.405683 0.702663i 0.588718 0.808339i \(-0.299633\pi\)
−0.994401 + 0.105675i \(0.966300\pi\)
\(440\) 0 0
\(441\) −3.50000 + 6.06218i −0.166667 + 0.288675i
\(442\) 0 0
\(443\) −6.00000 3.46410i −0.285069 0.164584i 0.350647 0.936508i \(-0.385962\pi\)
−0.635716 + 0.771923i \(0.719295\pi\)
\(444\) 0 0
\(445\) 12.1244i 0.574750i
\(446\) 0 0
\(447\) 15.0000 25.9808i 0.709476 1.22885i
\(448\) 0 0
\(449\) 1.73205i 0.0817405i 0.999164 + 0.0408703i \(0.0130130\pi\)
−0.999164 + 0.0408703i \(0.986987\pi\)
\(450\) 0 0
\(451\) −6.00000 10.3923i −0.282529 0.489355i
\(452\) 0 0
\(453\) −19.0000 32.9090i −0.892698 1.54620i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.0000 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) 0 0
\(459\) 12.0000 + 20.7846i 0.560112 + 0.970143i
\(460\) 0 0
\(461\) 10.5000 + 18.1865i 0.489034 + 0.847031i 0.999920 0.0126168i \(-0.00401615\pi\)
−0.510887 + 0.859648i \(0.670683\pi\)
\(462\) 0 0
\(463\) 13.8564i 0.643962i 0.946746 + 0.321981i \(0.104349\pi\)
−0.946746 + 0.321981i \(0.895651\pi\)
\(464\) 0 0
\(465\) −5.00000 + 8.66025i −0.231869 + 0.401610i
\(466\) 0 0
\(467\) 27.7128i 1.28240i 0.767375 + 0.641198i \(0.221562\pi\)
−0.767375 + 0.641198i \(0.778438\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −14.0000 + 24.2487i −0.645086 + 1.11732i
\(472\) 0 0
\(473\) −6.00000 10.3923i −0.275880 0.477839i
\(474\) 0 0
\(475\) 3.50000 + 2.59808i 0.160591 + 0.119208i
\(476\) 0 0
\(477\) −3.00000 + 1.73205i −0.137361 + 0.0793052i
\(478\) 0 0
\(479\) −13.5000 7.79423i −0.616831 0.356127i 0.158803 0.987310i \(-0.449236\pi\)
−0.775634 + 0.631183i \(0.782570\pi\)
\(480\) 0 0
\(481\) −12.0000 + 20.7846i −0.547153 + 0.947697i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.0000 + 6.92820i 0.544892 + 0.314594i
\(486\) 0 0
\(487\) −38.0000 −1.72194 −0.860972 0.508652i \(-0.830144\pi\)
−0.860972 + 0.508652i \(0.830144\pi\)
\(488\) 0 0
\(489\) 6.00000 3.46410i 0.271329 0.156652i
\(490\) 0 0
\(491\) 19.5000 11.2583i 0.880023 0.508081i 0.00935679 0.999956i \(-0.497022\pi\)
0.870666 + 0.491875i \(0.163688\pi\)
\(492\) 0 0
\(493\) 10.3923i 0.468046i
\(494\) 0 0
\(495\) 1.73205i 0.0778499i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −21.0000 + 12.1244i −0.940089 + 0.542761i −0.889988 0.455983i \(-0.849288\pi\)
−0.0501009 + 0.998744i \(0.515954\pi\)
\(500\) 0 0
\(501\) 24.0000 1.07224
\(502\) 0 0
\(503\) −3.00000 1.73205i −0.133763 0.0772283i 0.431625 0.902053i \(-0.357940\pi\)
−0.565388 + 0.824825i \(0.691274\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) 1.00000 1.73205i 0.0444116 0.0769231i
\(508\) 0 0
\(509\) −24.0000 13.8564i −1.06378 0.614174i −0.137305 0.990529i \(-0.543844\pi\)
−0.926476 + 0.376354i \(0.877178\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.00000 17.3205i 0.0883022 0.764719i
\(514\) 0 0
\(515\) 2.00000 + 3.46410i 0.0881305 + 0.152647i
\(516\) 0 0
\(517\) 3.00000 5.19615i 0.131940 0.228527i
\(518\) 0 0
\(519\) −24.0000 13.8564i −1.05348 0.608229i
\(520\) 0 0
\(521\) 5.19615i 0.227648i 0.993501 + 0.113824i \(0.0363099\pi\)
−0.993501 + 0.113824i \(0.963690\pi\)
\(522\) 0 0
\(523\) 19.0000 32.9090i 0.830812 1.43901i −0.0665832 0.997781i \(-0.521210\pi\)
0.897395 0.441228i \(-0.145457\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.0000 25.9808i −0.653410 1.13174i
\(528\) 0 0
\(529\) −11.5000 19.9186i −0.500000 0.866025i
\(530\) 0 0
\(531\) −9.00000 −0.390567
\(532\) 0 0
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 9.00000 + 15.5885i 0.388379 + 0.672692i
\(538\) 0 0
\(539\) 12.1244i 0.522233i
\(540\) 0 0
\(541\) −12.5000 + 21.6506i −0.537417 + 0.930834i 0.461625 + 0.887075i \(0.347267\pi\)
−0.999042 + 0.0437584i \(0.986067\pi\)
\(542\) 0 0
\(543\) 27.7128i 1.18927i
\(544\) 0 0
\(545\) 13.5000 + 7.79423i 0.578276 + 0.333868i
\(546\) 0 0
\(547\) −16.0000 + 27.7128i −0.684111 + 1.18491i 0.289605 + 0.957146i \(0.406476\pi\)
−0.973715 + 0.227768i \(0.926857\pi\)
\(548\) 0 0
\(549\) −0.500000 0.866025i −0.0213395 0.0369611i
\(550\) 0 0
\(551\) 4.50000 6.06218i 0.191706 0.258257i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 12.0000 + 6.92820i 0.509372 + 0.294086i
\(556\) 0 0
\(557\) 6.00000 10.3923i 0.254228 0.440336i −0.710457 0.703740i \(-0.751512\pi\)
0.964686 + 0.263404i \(0.0848453\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 18.0000 + 10.3923i 0.759961 + 0.438763i
\(562\) 0 0
\(563\) 18.0000 0.758610 0.379305 0.925272i \(-0.376163\pi\)
0.379305 + 0.925272i \(0.376163\pi\)
\(564\) 0 0
\(565\) −15.0000 + 8.66025i −0.631055 + 0.364340i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.5885i 0.653502i −0.945110 0.326751i \(-0.894046\pi\)
0.945110 0.326751i \(-0.105954\pi\)
\(570\) 0 0
\(571\) 32.9090i 1.37720i 0.725143 + 0.688599i \(0.241774\pi\)
−0.725143 + 0.688599i \(0.758226\pi\)
\(572\) 0 0
\(573\) 21.0000 12.1244i 0.877288 0.506502i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −8.00000 −0.333044 −0.166522 0.986038i \(-0.553254\pi\)
−0.166522 + 0.986038i \(0.553254\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3.00000 5.19615i 0.124247 0.215203i
\(584\) 0 0
\(585\) 3.00000 + 1.73205i 0.124035 + 0.0716115i
\(586\) 0 0
\(587\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) −2.50000 + 21.6506i −0.103011 + 0.892099i
\(590\) 0 0
\(591\) 6.00000 + 10.3923i 0.246807 + 0.427482i
\(592\) 0 0
\(593\) 18.0000 31.1769i 0.739171 1.28028i −0.213697 0.976900i \(-0.568551\pi\)
0.952869 0.303383i \(-0.0981160\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 10.3923i 0.425329i
\(598\) 0 0
\(599\) −24.0000 + 41.5692i −0.980613 + 1.69847i −0.320607 + 0.947212i \(0.603887\pi\)
−0.660006 + 0.751260i \(0.729446\pi\)
\(600\) 0 0
\(601\) 39.8372i 1.62499i 0.582967 + 0.812496i \(0.301892\pi\)
−0.582967 + 0.812496i \(0.698108\pi\)
\(602\) 0 0
\(603\) −5.00000 8.66025i −0.203616 0.352673i
\(604\) 0 0
\(605\) −4.00000 6.92820i −0.162623 0.281672i
\(606\) 0 0
\(607\) 10.0000 0.405887 0.202944 0.979190i \(-0.434949\pi\)
0.202944 + 0.979190i \(0.434949\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.00000 + 10.3923i 0.242734 + 0.420428i
\(612\) 0 0
\(613\) 13.0000 + 22.5167i 0.525065 + 0.909439i 0.999574 + 0.0291886i \(0.00929235\pi\)
−0.474509 + 0.880251i \(0.657374\pi\)
\(614\) 0 0
\(615\) 13.8564i 0.558744i
\(616\) 0 0
\(617\) 12.0000 20.7846i 0.483102 0.836757i −0.516710 0.856161i \(-0.672843\pi\)
0.999812 + 0.0194037i \(0.00617676\pi\)
\(618\) 0 0
\(619\) 3.46410i 0.139234i 0.997574 + 0.0696170i \(0.0221777\pi\)
−0.997574 + 0.0696170i \(0.977822\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −6.00000 13.8564i −0.239617 0.553372i
\(628\) 0 0
\(629\) −36.0000 + 20.7846i −1.43541 + 0.828737i
\(630\) 0 0
\(631\) 19.5000 + 11.2583i 0.776283 + 0.448187i 0.835111 0.550081i \(-0.185403\pi\)
−0.0588285 + 0.998268i \(0.518737\pi\)
\(632\) 0 0
\(633\) 1.00000 1.73205i 0.0397464 0.0688428i
\(634\) 0 0
\(635\) −2.00000 −0.0793676
\(636\) 0 0
\(637\) 21.0000 + 12.1244i 0.832050 + 0.480384i
\(638\) 0 0
\(639\) 15.0000 0.593391
\(640\) 0 0
\(641\) 34.5000 19.9186i 1.36267 0.786737i 0.372690 0.927956i \(-0.378436\pi\)
0.989978 + 0.141219i \(0.0451022\pi\)
\(642\) 0 0
\(643\) −15.0000 + 8.66025i −0.591542 + 0.341527i −0.765707 0.643189i \(-0.777611\pi\)
0.174165 + 0.984717i \(0.444277\pi\)
\(644\) 0 0
\(645\) 13.8564i 0.545595i
\(646\) 0 0
\(647\) 17.3205i 0.680939i 0.940255 + 0.340470i \(0.110586\pi\)
−0.940255 + 0.340470i \(0.889414\pi\)
\(648\) 0 0
\(649\) 13.5000 7.79423i 0.529921 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 36.0000 1.40879 0.704394 0.709809i \(-0.251219\pi\)
0.704394 + 0.709809i \(0.251219\pi\)
\(654\) 0 0
\(655\) 9.00000 + 5.19615i 0.351659 + 0.203030i
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) 18.0000 31.1769i 0.701180 1.21448i −0.266872 0.963732i \(-0.585990\pi\)
0.968052 0.250748i \(-0.0806766\pi\)
\(660\) 0 0
\(661\) 25.5000 + 14.7224i 0.991835 + 0.572636i 0.905822 0.423658i \(-0.139254\pi\)
0.0860127 + 0.996294i \(0.472587\pi\)
\(662\) 0 0
\(663\) −36.0000 + 20.7846i −1.39812 + 0.807207i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 8.00000 13.8564i 0.309298 0.535720i
\(670\) 0 0
\(671\) 1.50000 + 0.866025i 0.0579069 + 0.0334325i
\(672\) 0 0
\(673\) 20.7846i 0.801188i 0.916256 + 0.400594i \(0.131196\pi\)
−0.916256 + 0.400594i \(0.868804\pi\)
\(674\) 0 0
\(675\) −2.00000 + 3.46410i −0.0769800 + 0.133333i
\(676\) 0 0
\(677\) 20.7846i 0.798817i 0.916773 + 0.399409i \(0.130785\pi\)
−0.916773 + 0.399409i \(0.869215\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30.0000 −1.14792 −0.573959 0.818884i \(-0.694593\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) −13.0000 22.5167i −0.495981 0.859064i
\(688\) 0 0
\(689\) 6.00000 + 10.3923i 0.228582 + 0.395915i
\(690\) 0 0
\(691\) 15.5885i 0.593013i −0.955031 0.296506i \(-0.904178\pi\)
0.955031 0.296506i \(-0.0958216\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.3923i 0.394203i
\(696\) 0 0
\(697\) 36.0000 + 20.7846i 1.36360 + 0.787273i
\(698\) 0 0
\(699\) 18.0000 31.1769i 0.680823 1.17922i
\(700\) 0 0
\(701\) −3.00000 5.19615i −0.113308 0.196256i 0.803794 0.594908i \(-0.202811\pi\)
−0.917102 + 0.398652i \(0.869478\pi\)
\(702\) 0 0
\(703\) 30.0000 + 3.46410i 1.13147 + 0.130651i
\(704\) 0 0
\(705\) 6.00000 3.46410i 0.225973 0.130466i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 17.5000 30.3109i 0.657226 1.13835i −0.324104 0.946021i \(-0.605063\pi\)
0.981331 0.192328i \(-0.0616038\pi\)
\(710\) 0 0
\(711\) −1.00000 −0.0375029
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −6.00000 −0.224387
\(716\) 0 0
\(717\) 15.0000 8.66025i 0.560185 0.323423i
\(718\) 0 0
\(719\) 1.50000 0.866025i 0.0559406 0.0322973i −0.471769 0.881722i \(-0.656384\pi\)
0.527709 + 0.849425i \(0.323051\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 10.3923i 0.386494i
\(724\) 0 0
\(725\) −1.50000 + 0.866025i −0.0557086 + 0.0321634i
\(726\) 0 0
\(727\) 39.0000 22.5167i 1.44643 0.835097i 0.448163 0.893952i \(-0.352078\pi\)
0.998267 + 0.0588549i \(0.0187449\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 36.0000 + 20.7846i 1.33151 + 0.768747i
\(732\) 0 0
\(733\) −44.0000 −1.62518 −0.812589 0.582838i \(-0.801942\pi\)
−0.812589 + 0.582838i \(0.801942\pi\)
\(734\) 0 0
\(735\) 7.00000 12.1244i 0.258199 0.447214i
\(736\) 0 0
\(737\) 15.0000 + 8.66025i 0.552532 + 0.319005i
\(738\) 0 0
\(739\) −37.5000 + 21.6506i −1.37946 + 0.796431i −0.992094 0.125495i \(-0.959948\pi\)
−0.387366 + 0.921926i \(0.626615\pi\)
\(740\) 0 0
\(741\) 30.0000 + 3.46410i 1.10208 + 0.127257i
\(742\) 0 0
\(743\) 6.00000 + 10.3923i 0.220119 + 0.381257i 0.954844 0.297108i \(-0.0960222\pi\)
−0.734725 + 0.678365i \(0.762689\pi\)
\(744\) 0 0
\(745\) −7.50000 + 12.9904i −0.274779 + 0.475931i
\(746\) 0 0
\(747\) −6.00000 3.46410i −0.219529 0.126745i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 21.5000 37.2391i 0.784546 1.35887i −0.144724 0.989472i \(-0.546229\pi\)
0.929270 0.369402i \(-0.120437\pi\)
\(752\) 0 0
\(753\) 10.3923i 0.378717i
\(754\) 0 0
\(755\) 9.50000 + 16.4545i 0.345740 + 0.598840i
\(756\) 0 0
\(757\) −1.00000 1.73205i −0.0363456 0.0629525i 0.847280 0.531146i \(-0.178238\pi\)
−0.883626 + 0.468193i \(0.844905\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.00000 + 5.19615i 0.108465 + 0.187867i
\(766\) 0 0
\(767\) 31.1769i 1.12573i
\(768\) 0 0
\(769\) −21.5000 + 37.2391i −0.775310 + 1.34288i 0.159310 + 0.987229i \(0.449073\pi\)
−0.934620 + 0.355647i \(0.884260\pi\)
\(770\) 0 0
\(771\) 20.7846i 0.748539i
\(772\) 0 0
\(773\) 3.00000 + 1.73205i 0.107903 + 0.0622975i 0.552980 0.833194i \(-0.313491\pi\)
−0.445078 + 0.895492i \(0.646824\pi\)
\(774\) 0 0
\(775\) 2.50000 4.33013i 0.0898027 0.155543i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.0000 27.7128i −0.429945 0.992915i
\(780\) 0 0
\(781\) −22.5000 + 12.9904i −0.805113 + 0.464832i
\(782\) 0 0
\(783\) 6.00000 + 3.46410i 0.214423 + 0.123797i
\(784\) 0 0
\(785\) 7.00000 12.1244i 0.249841 0.432737i
\(786\) 0 0
\(787\) −14.0000 −0.499046 −0.249523 0.968369i \(-0.580274\pi\)
−0.249523 + 0.968369i \(0.580274\pi\)
\(788\) 0 0
\(789\) 42.0000 + 24.2487i 1.49524 + 0.863277i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.00000 + 1.73205i −0.106533 + 0.0615069i
\(794\) 0 0
\(795\) 6.00000 3.46410i 0.212798 0.122859i
\(796\) 0 0
\(797\) 17.3205i 0.613524i 0.951786 + 0.306762i \(0.0992455\pi\)
−0.951786 + 0.306762i \(0.900754\pi\)
\(798\) 0 0
\(799\) 20.7846i 0.735307i
\(800\) 0 0
\(801\) −10.5000 + 6.06218i −0.370999 + 0.214197i
\(802\) 0 0
\(803\) −6.00000 + 3.46410i −0.211735 + 0.122245i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 27.0000 + 15.5885i 0.950445 + 0.548740i
\(808\) 0 0
\(809\) −3.00000 −0.105474 −0.0527372 0.998608i \(-0.516795\pi\)
−0.0527372 + 0.998608i \(0.516795\pi\)
\(810\) 0 0
\(811\) 6.50000 11.2583i 0.228246 0.395333i −0.729042 0.684468i \(-0.760034\pi\)
0.957288 + 0.289135i \(0.0933677\pi\)
\(812\) 0 0
\(813\) 33.0000 + 19.0526i 1.15736 + 0.668202i
\(814\) 0 0
\(815\) −3.00000 + 1.73205i −0.105085 + 0.0606711i
\(816\) 0 0
\(817\) −12.0000 27.7128i −0.419827 0.969549i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4.50000 7.79423i 0.157051 0.272020i −0.776753 0.629805i \(-0.783135\pi\)
0.933804 + 0.357785i \(0.116468\pi\)
\(822\) 0 0
\(823\) −15.0000 8.66025i −0.522867 0.301877i 0.215240 0.976561i \(-0.430947\pi\)
−0.738107 + 0.674684i \(0.764280\pi\)
\(824\) 0 0
\(825\) 3.46410i 0.120605i
\(826\) 0 0
\(827\) 3.00000 5.19615i 0.104320 0.180688i −0.809140 0.587616i \(-0.800067\pi\)
0.913460 + 0.406928i \(0.133400\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) −16.0000 27.7128i −0.555034 0.961347i
\(832\) 0 0
\(833\) 21.0000 + 36.3731i 0.727607 + 1.26025i
\(834\) 0 0
\(835\) −12.0000 −0.415277
\(836\) 0 0
\(837\) −20.0000 −0.691301
\(838\) 0 0
\(839\) 12.0000 + 20.7846i 0.414286 + 0.717564i 0.995353 0.0962912i \(-0.0306980\pi\)
−0.581067 + 0.813856i \(0.697365\pi\)
\(840\) 0 0
\(841\) −13.0000 22.5167i −0.448276 0.776437i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.500000 + 0.866025i −0.0172005 + 0.0297922i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 54.0000 + 31.1769i 1.85328 + 1.06999i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −1.00000 1.73205i −0.0342393 0.0593043i 0.848398 0.529359i \(-0.177568\pi\)
−0.882637 + 0.470055i \(0.844234\pi\)
\(854\) 0 0
\(855\) 0.500000 4.33013i 0.0170996 0.148087i
\(856\) 0 0
\(857\) 30.0000 17.3205i 1.02478 0.591657i 0.109295 0.994009i \(-0.465141\pi\)
0.915485 + 0.402352i \(0.131807\pi\)
\(858\) 0 0
\(859\) −28.5000 16.4545i −0.972407 0.561420i −0.0724381 0.997373i \(-0.523078\pi\)
−0.899969 + 0.435953i \(0.856411\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 54.0000 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(864\) 0 0
\(865\) 12.0000 + 6.92820i 0.408012 + 0.235566i
\(866\) 0 0
\(867\) −38.0000 −1.29055
\(868\) 0 0
\(869\) 1.50000 0.866025i 0.0508840 0.0293779i
\(870\) 0 0
\(871\) −30.0000 + 17.3205i −1.01651 + 0.586883i
\(872\) 0 0
\(873\) 13.8564i 0.468968i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.0000 6.92820i 0.405211 0.233949i −0.283519 0.958967i \(-0.591502\pi\)
0.688730 + 0.725018i \(0.258169\pi\)
\(878\) 0 0
\(879\) 12.0000 6.92820i 0.404750 0.233682i
\(880\) 0 0
\(881\) 33.0000 1.11180 0.555899 0.831250i \(-0.312374\pi\)
0.555899 + 0.831250i \(0.312374\pi\)
\(882\) 0 0
\(883\) 12.0000 + 6.92820i 0.403832 + 0.233153i 0.688136 0.725582i \(-0.258429\pi\)
−0.284304 + 0.958734i \(0.591763\pi\)
\(884\) 0 0
\(885\) 18.0000 0.605063
\(886\) 0 0
\(887\) −6.00000 + 10.3923i −0.201460 + 0.348939i −0.948999 0.315279i \(-0.897902\pi\)
0.747539 + 0.664218i \(0.231235\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 16.5000 9.52628i 0.552771 0.319142i
\(892\) 0 0
\(893\) 9.00000 12.1244i 0.301174 0.405726i
\(894\) 0 0
\(895\) −4.50000 7.79423i −0.150418 0.260532i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.50000 4.33013i −0.250139 0.144418i
\(900\) 0 0
\(901\) 20.7846i 0.692436i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.8564i 0.460603i
\(906\) 0 0
\(907\) 16.0000 + 27.7128i 0.531271 + 0.920189i 0.999334 + 0.0364935i \(0.0116188\pi\)
−0.468063 + 0.883695i \(0.655048\pi\)
\(908\) 0 0
\(909\) 1.50000 + 2.59808i 0.0497519 + 0.0861727i
\(910\) 0 0
\(911\) −15.0000 −0.496972 −0.248486 0.968635i \(-0.579933\pi\)
−0.248486 + 0.968635i \(0.579933\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) 0 0
\(915\) 1.00000 + 1.73205i 0.0330590 + 0.0572598i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 45.0333i 1.48551i 0.669562 + 0.742756i \(0.266482\pi\)
−0.669562 + 0.742756i \(0.733518\pi\)
\(920\) 0 0
\(921\) 14.0000 24.2487i 0.461316 0.799022i
\(922\) 0 0
\(923\) 51.9615i 1.71033i
\(924\) 0 0
\(925\) −6.00000 3.46410i −0.197279 0.113899i
\(926\) 0 0
\(927\) 2.00000 3.46410i 0.0656886 0.113776i
\(928\) 0 0
\(929\) −22.5000 38.9711i −0.738201 1.27860i −0.953305 0.302010i \(-0.902342\pi\)
0.215104 0.976591i \(-0.430991\pi\)
\(930\) 0 0
\(931\) 3.50000 30.3109i 0.114708 0.993399i
\(932\) 0 0
\(933\) −6.00000 + 3.46410i −0.196431 + 0.113410i
\(934\) 0 0
\(935\) −9.00000 5.19615i −0.294331 0.169932i
\(936\) 0 0
\(937\) −1.00000 + 1.73205i −0.0326686 + 0.0565836i −0.881897 0.471441i \(-0.843734\pi\)
0.849229 + 0.528025i \(0.177067\pi\)
\(938\) 0 0
\(939\) 52.0000 1.69696
\(940\) 0 0
\(941\) −40.5000 23.3827i −1.32026 0.762254i −0.336492 0.941686i \(-0.609241\pi\)
−0.983770 + 0.179433i \(0.942574\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −51.0000 + 29.4449i −1.65728 + 0.956830i −0.683314 + 0.730125i \(0.739462\pi\)
−0.973964 + 0.226705i \(0.927205\pi\)
\(948\) 0 0
\(949\) 13.8564i 0.449798i
\(950\) 0 0
\(951\) 41.5692i 1.34797i
\(952\) 0 0
\(953\) −30.0000 + 17.3205i −0.971795 + 0.561066i −0.899783 0.436337i \(-0.856275\pi\)
−0.0720122 + 0.997404i \(0.522942\pi\)
\(954\) 0 0
\(955\) −10.5000 + 6.06218i −0.339772 + 0.196167i
\(956\) 0 0
\(957\) 6.00000 0.193952
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(968\) 0 0
\(969\) 42.0000 + 31.1769i 1.34923 + 1.00155i
\(970\) 0 0
\(971\) 18.0000 + 31.1769i 0.577647 + 1.00051i 0.995748 + 0.0921142i \(0.0293625\pi\)
−0.418101 + 0.908401i \(0.637304\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −6.00000 3.46410i −0.192154 0.110940i
\(976\) 0 0
\(977\) 27.7128i 0.886611i 0.896370 + 0.443306i \(0.146194\pi\)
−0.896370 + 0.443306i \(0.853806\pi\)
\(978\) 0 0
\(979\) 10.5000 18.1865i 0.335581 0.581244i
\(980\) 0 0
\(981\) 15.5885i 0.497701i
\(982\) 0 0
\(983\) −18.0000 31.1769i −0.574111 0.994389i −0.996138 0.0878058i \(-0.972015\pi\)
0.422027 0.906583i \(-0.361319\pi\)
\(984\) 0 0
\(985\) −3.00000 5.19615i −0.0955879 0.165563i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 4.00000 + 6.92820i 0.127064 + 0.220082i 0.922538 0.385906i \(-0.126111\pi\)
−0.795474 + 0.605988i \(0.792778\pi\)
\(992\) 0 0
\(993\) −4.00000 6.92820i −0.126936 0.219860i
\(994\) 0 0
\(995\) 5.19615i 0.164729i
\(996\) 0 0
\(997\) −11.0000 + 19.0526i −0.348373 + 0.603401i −0.985961 0.166978i \(-0.946599\pi\)
0.637587 + 0.770378i \(0.279933\pi\)
\(998\) 0 0
\(999\) 27.7128i 0.876795i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1520.2.bq.i.31.1 yes 2
4.3 odd 2 1520.2.bq.c.31.1 2
19.8 odd 6 1520.2.bq.c.1471.1 yes 2
76.27 even 6 inner 1520.2.bq.i.1471.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1520.2.bq.c.31.1 2 4.3 odd 2
1520.2.bq.c.1471.1 yes 2 19.8 odd 6
1520.2.bq.i.31.1 yes 2 1.1 even 1 trivial
1520.2.bq.i.1471.1 yes 2 76.27 even 6 inner