L(s) = 1 | − 2·5-s + 7-s − 4·13-s + 6·17-s + 19-s − 2·23-s + 5·25-s + 12·29-s − 31-s − 2·35-s − 2·37-s + 4·41-s + 18·43-s + 2·47-s − 6·49-s + 6·53-s + 8·59-s − 11·61-s + 8·65-s + 12·67-s + 8·71-s − 5·73-s + 4·79-s + 8·83-s − 12·85-s − 18·89-s − 4·91-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 0.377·7-s − 1.10·13-s + 1.45·17-s + 0.229·19-s − 0.417·23-s + 25-s + 2.22·29-s − 0.179·31-s − 0.338·35-s − 0.328·37-s + 0.624·41-s + 2.74·43-s + 0.291·47-s − 6/7·49-s + 0.824·53-s + 1.04·59-s − 1.40·61-s + 0.992·65-s + 1.46·67-s + 0.949·71-s − 0.585·73-s + 0.450·79-s + 0.878·83-s − 1.30·85-s − 1.90·89-s − 0.419·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.092462703\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.092462703\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.798295131946900679255190336462, −9.328452850962182473162756689369, −8.694665748065900063379766906093, −8.516394905834565590537238602637, −7.930409222946531544087263450389, −7.76348952180550052799532236895, −7.31684744172923089916144354756, −7.02293442072793526739936197948, −6.48800632249584503681377331316, −5.94503026095327874346981430824, −5.50816857353372588428262268864, −5.09134814278855467995815352418, −4.53062754939942534503311676295, −4.34679744044240182802171336437, −3.66675731695643390722182114447, −3.20222581647745350566525667192, −2.64211136845691535474448416617, −2.21503541101929305742060862499, −1.14381699843739766241159282098, −0.67869172730049211863501936009,
0.67869172730049211863501936009, 1.14381699843739766241159282098, 2.21503541101929305742060862499, 2.64211136845691535474448416617, 3.20222581647745350566525667192, 3.66675731695643390722182114447, 4.34679744044240182802171336437, 4.53062754939942534503311676295, 5.09134814278855467995815352418, 5.50816857353372588428262268864, 5.94503026095327874346981430824, 6.48800632249584503681377331316, 7.02293442072793526739936197948, 7.31684744172923089916144354756, 7.76348952180550052799532236895, 7.930409222946531544087263450389, 8.516394905834565590537238602637, 8.694665748065900063379766906093, 9.328452850962182473162756689369, 9.798295131946900679255190336462