L(s) = 1 | + 2·7-s + 9-s − 6·11-s − 4·23-s + 2·25-s − 4·37-s + 10·43-s − 3·49-s − 4·53-s + 2·63-s − 2·67-s + 4·71-s − 12·77-s + 24·79-s + 81-s − 6·99-s − 14·107-s − 20·109-s − 8·113-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | + 0.755·7-s + 1/3·9-s − 1.80·11-s − 0.834·23-s + 2/5·25-s − 0.657·37-s + 1.52·43-s − 3/7·49-s − 0.549·53-s + 0.251·63-s − 0.244·67-s + 0.474·71-s − 1.36·77-s + 2.70·79-s + 1/9·81-s − 0.603·99-s − 1.35·107-s − 1.91·109-s − 0.752·113-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.73610067984365931712136403899, −7.34539009845465169741037329392, −6.61353696270975125558800128410, −6.50083634516695474374822313221, −5.60994725171421288900300643191, −5.49681646689936107560189184595, −4.99472193654022144603292181434, −4.57330484807354072464267120552, −4.09769701704306453206415727989, −3.49958218288214073989535878325, −2.88854994760096348327395621602, −2.34751045342836577111638319294, −1.90067392512467637747143960220, −1.04587928648818471612528834810, 0,
1.04587928648818471612528834810, 1.90067392512467637747143960220, 2.34751045342836577111638319294, 2.88854994760096348327395621602, 3.49958218288214073989535878325, 4.09769701704306453206415727989, 4.57330484807354072464267120552, 4.99472193654022144603292181434, 5.49681646689936107560189184595, 5.60994725171421288900300643191, 6.50083634516695474374822313221, 6.61353696270975125558800128410, 7.34539009845465169741037329392, 7.73610067984365931712136403899