Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 43 x^{2} )( 1 - 4 x + 43 x^{2} )$ |
| $1 - 10 x + 110 x^{2} - 430 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.348746511119$, $\pm0.401344489543$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $32$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1520$ | $3648000$ | $6402077360$ | $11688192000000$ | $21605448318119600$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $34$ | $1970$ | $80518$ | $3418798$ | $146967394$ | $6321165410$ | $271819280998$ | $11688211072798$ | $502592637117154$ | $21611482031104850$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=5 x^6+42 x^5+10 x^4+3 x^3+10 x^2+42 x+5$
- $y^2=29 x^6+41 x^5+14 x^4+33 x^3+10 x^2+6 x+30$
- $y^2=38 x^6+30 x^5+3 x^4+6 x^3+34 x^2+12 x+6$
- $y^2=x^6+34 x^5+23 x^4+37 x^3+23 x^2+34 x+1$
- $y^2=26 x^6+14 x^5+40 x^4+36 x^3+17 x^2+10 x+34$
- $y^2=9 x^6+22 x^5+15 x^4+34 x^3+25 x^2+42 x+13$
- $y^2=35 x^6+14 x^5+28 x^4+x^3+28 x^2+14 x+35$
- $y^2=28 x^6+4 x^5+5 x^4+32 x^3+5 x^2+4 x+28$
- $y^2=x^6+31 x^5+40 x^4+19 x^3+40 x^2+31 x+1$
- $y^2=5 x^6+39 x^5+10 x^4+41 x^2+5 x+12$
- $y^2=36 x^6+6 x^5+13 x^4+2 x^3+13 x^2+6 x+36$
- $y^2=34 x^6+24 x^5+7 x^4+5 x^3+7 x^2+24 x+34$
- $y^2=6 x^6+9 x^5+9 x^4+35 x^3+38 x^2+41 x+31$
- $y^2=20 x^6+3 x^5+12 x^4+23 x^3+12 x^2+3 x+20$
- $y^2=23 x^6+16 x^5+37 x^4+16 x^3+18 x^2+15 x+24$
- $y^2=17 x^6+7 x^4+34 x^3+7 x^2+17$
- $y^2=20 x^6+37 x^5+27 x^4+19 x^3+3 x^2+27 x+33$
- $y^2=23 x^6+10 x^5+40 x^4+9 x^3+40 x^2+10 x+23$
- $y^2=33 x^6+20 x^5+13 x^4+25 x^3+40 x^2+26 x+3$
- $y^2=22 x^6+37 x^5+3 x^4+8 x^3+32 x^2+34 x+8$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.ag $\times$ 1.43.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.ac_ck | $2$ | (not in LMFDB) |
| 2.43.c_ck | $2$ | (not in LMFDB) |
| 2.43.k_eg | $2$ | (not in LMFDB) |