Properties

Label 2.43.ak_eg
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 43 x^{2} )( 1 - 4 x + 43 x^{2} )$
  $1 - 10 x + 110 x^{2} - 430 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.348746511119$, $\pm0.401344489543$
Angle rank:  $2$ (numerical)
Jacobians:  $32$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1520$ $3648000$ $6402077360$ $11688192000000$ $21605448318119600$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $34$ $1970$ $80518$ $3418798$ $146967394$ $6321165410$ $271819280998$ $11688211072798$ $502592637117154$ $21611482031104850$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.ag $\times$ 1.43.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.ac_ck$2$(not in LMFDB)
2.43.c_ck$2$(not in LMFDB)
2.43.k_eg$2$(not in LMFDB)