L(s) = 1 | − 2-s + 2·5-s + 7-s + 8-s − 2·10-s + 3·11-s + 5·13-s − 14-s − 16-s − 6·17-s − 5·19-s − 3·22-s + 3·25-s − 5·26-s − 8·31-s + 6·34-s + 2·35-s − 11·37-s + 5·38-s + 2·40-s + 6·41-s − 2·43-s + 6·47-s + 7·49-s − 3·50-s + 18·53-s + 6·55-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.894·5-s + 0.377·7-s + 0.353·8-s − 0.632·10-s + 0.904·11-s + 1.38·13-s − 0.267·14-s − 1/4·16-s − 1.45·17-s − 1.14·19-s − 0.639·22-s + 3/5·25-s − 0.980·26-s − 1.43·31-s + 1.02·34-s + 0.338·35-s − 1.80·37-s + 0.811·38-s + 0.316·40-s + 0.937·41-s − 0.304·43-s + 0.875·47-s + 49-s − 0.424·50-s + 2.47·53-s + 0.809·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.787461049\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.787461049\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.916732566382925640226647820211, −9.422618477591754766479554891984, −9.045298273466182787870796596005, −8.847369243257180812431032660275, −8.493017871259422587394446632965, −8.266274093691874252632780008401, −7.43251362007141889403805249860, −7.09914997887592321606539854201, −6.56518857049837417056191977900, −6.46359244763172329999033479885, −5.67681541707511079774628834369, −5.55378504344832800887056352650, −4.84311983640726876920877448199, −4.26162298282323903470022789397, −3.84637623562808244760566236234, −3.49767744318245298164583121366, −2.24620458241471837175061669364, −2.19629460654248772239046829982, −1.46638571394123082379151316002, −0.68701130109115560134573676209,
0.68701130109115560134573676209, 1.46638571394123082379151316002, 2.19629460654248772239046829982, 2.24620458241471837175061669364, 3.49767744318245298164583121366, 3.84637623562808244760566236234, 4.26162298282323903470022789397, 4.84311983640726876920877448199, 5.55378504344832800887056352650, 5.67681541707511079774628834369, 6.46359244763172329999033479885, 6.56518857049837417056191977900, 7.09914997887592321606539854201, 7.43251362007141889403805249860, 8.266274093691874252632780008401, 8.493017871259422587394446632965, 8.847369243257180812431032660275, 9.045298273466182787870796596005, 9.422618477591754766479554891984, 9.916732566382925640226647820211