| L(s)  = 1 | − 3·7-s     + 4·9-s                 − 6·17-s             − 14·23-s     − 2·25-s             + 2·31-s                     − 8·41-s             − 12·47-s     + 2·49-s                             − 12·63-s                 + 13·71-s     − 6·73-s             − 4·79-s     + 7·81-s                 + 12·89-s                 + 15·97-s             + 19·103-s                     − 22·113-s             + 18·119-s     + 12·121-s             + 127-s         + 131-s             + 137-s     + 139-s                     + 149-s     + 151-s     − 24·153-s  + ⋯ | 
| L(s)  = 1 | − 1.13·7-s     + 4/3·9-s                 − 1.45·17-s             − 2.91·23-s     − 2/5·25-s             + 0.359·31-s                     − 1.24·41-s             − 1.75·47-s     + 2/7·49-s                             − 1.51·63-s                 + 1.54·71-s     − 0.702·73-s             − 0.450·79-s     + 7/9·81-s                 + 1.27·89-s                 + 1.52·97-s             + 1.87·103-s                     − 2.06·113-s             + 1.65·119-s     + 1.09·121-s             + 0.0887·127-s         + 0.0873·131-s             + 0.0854·137-s     + 0.0848·139-s                     + 0.0819·149-s     + 0.0813·151-s     − 1.94·153-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.461629738850377944537427359853, −8.932478334846632090726123698795, −8.228641958772684175794965602224, −7.920905830332773209065548494163, −7.24662133618947414268649191652, −6.68816649600718255343604577993, −6.34735324219322177806737128498, −5.97856645934258042172649280775, −5.00660257013163213679742776368, −4.47689845934523097951470131925, −3.86776710950254674265913343859, −3.44804166921272108753166731405, −2.32640521625712662014207077275, −1.74438294267145940336829441245, 0, 
1.74438294267145940336829441245, 2.32640521625712662014207077275, 3.44804166921272108753166731405, 3.86776710950254674265913343859, 4.47689845934523097951470131925, 5.00660257013163213679742776368, 5.97856645934258042172649280775, 6.34735324219322177806737128498, 6.68816649600718255343604577993, 7.24662133618947414268649191652, 7.920905830332773209065548494163, 8.228641958772684175794965602224, 8.932478334846632090726123698795, 9.461629738850377944537427359853
