Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
| $A(\F_{q^r})$ |
$5928$ |
$29877120$ |
$150852193128$ |
$806012992512000$ |
$4297904968893612648$ |
Point counts of the curve
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
| $C(\F_{q^r})$ |
$80$ |
$5602$ |
$387776$ |
$28382494$ |
$2073206240$ |
$151334938114$ |
$11047387028912$ |
$806460076160446$ |
$58871587542850928$ |
$4297625828358430882$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):
- $y^2=52 x^6+53 x^5+4 x^4+37 x^3+72 x^2+17 x+22$
- $y^2=43 x^6+67 x^5+23 x^4+67 x^3+37 x^2+6 x+7$
- $y^2=36 x^6+51 x^5+16 x^4+53 x^3+27 x^2+44 x+61$
- $y^2=23 x^6+61 x^5+59 x^4+36 x^3+59 x^2+61 x+23$
- $y^2=61 x^6+53 x^5+30 x^4+71 x^3+33 x^2+5 x+69$
- $y^2=21 x^6+15 x^5+60 x^4+3 x^3+44 x^2+47 x+21$
- $y^2=65 x^6+72 x^5+42 x^4+57 x^3+42 x^2+72 x+65$
- $y^2=59 x^6+32 x^5+54 x^4+26 x^3+54 x^2+32 x+59$
- $y^2=70 x^6+35 x^5+32 x^4+62 x^3+32 x^2+35 x+70$
- $y^2=49 x^6+46 x^5+57 x^4+45 x^3+70 x^2+25 x+65$
- $y^2=72 x^6+30 x^5+25 x^4+52 x^3+25 x^2+30 x+72$
- $y^2=30 x^6+33 x^5+60 x^4+25 x^3+60 x^2+33 x+30$
- $y^2=56 x^6+19 x^5+53 x^4+45 x^3+30 x^2+61 x+30$
- $y^2=64 x^6+14 x^5+45 x^4+22 x^3+45 x^2+14 x+64$
- $y^2=20 x^6+70 x^5+46 x^4+52 x^3+46 x^2+70 x+20$
- $y^2=31 x^6+18 x^5+67 x^4+12 x^3+61 x^2+72 x+29$
- $y^2=51 x^6+7 x^5+67 x^4+60 x^3+19 x^2+56 x+22$
- $y^2=13 x^6+19 x^5+31 x^4+29 x^3+31 x^2+19 x+13$
- $y^2=47 x^6+36 x^5+5 x^4+23 x^3+5 x^2+36 x+47$
- $y^2=5 x^6+52 x^5+18 x^4+x^3+69 x^2+26 x+40$
- and 76 more
- $y^2=18 x^6+40 x^5+69 x^4+53 x^3+69 x^2+40 x+18$
- $y^2=56 x^6+69 x^5+13 x^4+29 x^3+40 x^2+55 x+51$
- $y^2=7 x^6+65 x^4+58 x^3+19 x^2+21$
- $y^2=5 x^6+30 x^5+38 x^4+39 x^3+8 x^2+26 x+15$
- $y^2=36 x^6+25 x^5+39 x^4+50 x^3+56 x^2+61 x+41$
- $y^2=32 x^6+51 x^5+71 x^4+29 x^3+71 x^2+51 x+32$
- $y^2=33 x^6+55 x^5+63 x^4+59 x^3+39 x^2+8 x+28$
- $y^2=35 x^6+45 x^5+32 x^4+30 x^3+32 x^2+45 x+35$
- $y^2=37 x^6+72 x^5+43 x^4+28 x^3+43 x^2+72 x+37$
- $y^2=16 x^6+25 x^5+71 x^4+65 x^3+x^2+61 x+71$
- $y^2=28 x^6+35 x^5+27 x^4+56 x^3+27 x^2+35 x+28$
- $y^2=54 x^6+14 x^5+71 x^4+69 x^3+19 x^2+59 x+2$
- $y^2=28 x^6+63 x^5+2 x^4+24 x^3+2 x^2+63 x+28$
- $y^2=44 x^6+61 x^5+49 x^4+54 x^3+49 x^2+61 x+44$
- $y^2=57 x^6+57 x^5+7 x^4+22 x^3+56 x^2+71 x+57$
- $y^2=45 x^6+56 x^5+8 x^4+43 x^3+8 x^2+56 x+45$
- $y^2=19 x^6+34 x^5+8 x^4+68 x^3+8 x^2+34 x+19$
- $y^2=49 x^6+52 x^5+41 x^4+22 x^3+19 x^2+42 x+8$
- $y^2=27 x^6+3 x^5+70 x^4+66 x^3+48 x^2+38 x+3$
- $y^2=41 x^6+66 x^5+53 x^4+2 x^3+53 x^2+66 x+41$
- $y^2=31 x^6+54 x^5+33 x^4+39 x^3+33 x^2+54 x+31$
- $y^2=71 x^6+28 x^5+59 x^4+47 x^3+59 x^2+28 x+71$
- $y^2=61 x^6+3 x^5+71 x^4+25 x^3+64 x^2+6 x+38$
- $y^2=42 x^5+2 x^4+43 x^3+2 x^2+42 x$
- $y^2=36 x^6+69 x^5+22 x^4+47 x^3+59 x^2+2 x+38$
- $y^2=7 x^6+23 x^5+57 x^4+9 x^2+3 x+10$
- $y^2=19 x^6+7 x^5+35 x^4+66 x^3+50 x^2+56 x+19$
- $y^2=5 x^6+7 x^5+19 x^4+29 x^3+19 x^2+7 x+5$
- $y^2=3 x^6+26 x^5+67 x^4+17 x^3+67 x^2+26 x+3$
- $y^2=34 x^6+53 x^5+33 x^4+24 x^3+33 x^2+53 x+34$
- $y^2=41 x^6+34 x^5+5 x^4+5 x^2+34 x+41$
- $y^2=69 x^6+33 x^5+37 x^4+61 x^3+37 x^2+33 x+69$
- $y^2=23 x^6+35 x^5+64 x^4+21 x^3+6 x^2+48 x+4$
- $y^2=37 x^6+11 x^5+3 x^4+48 x^3+71 x^2+13 x+35$
- $y^2=18 x^6+31 x^5+12 x^4+39 x^3+3 x^2+43 x+71$
- $y^2=37 x^6+45 x^5+13 x^4+70 x^3+13 x^2+45 x+37$
- $y^2=24 x^6+18 x^5+55 x^4+55 x^3+54 x^2+16 x+9$
- $y^2=65 x^6+33 x^5+56 x^4+24 x^3+10 x^2+68 x+65$
- $y^2=56 x^6+39 x^5+46 x^4+21 x^3+46 x^2+39 x+56$
- $y^2=64 x^6+30 x^5+22 x^4+31 x^3+22 x^2+30 x+64$
- $y^2=38 x^6+4 x^5+2 x^4+39 x^3+2 x^2+4 x+38$
- $y^2=6 x^6+26 x^5+51 x^4+61 x^3+51 x^2+26 x+6$
- $y^2=41 x^6+16 x^5+33 x^4+47 x^3+68 x^2+55 x+41$
- $y^2=21 x^6+41 x^5+16 x^4+54 x^3+18 x^2+69 x+52$
- $y^2=63 x^6+22 x^5+38 x^4+59 x^3+6 x^2+60 x+17$
- $y^2=72 x^6+36 x^5+53 x^4+56 x^3+53 x^2+36 x+72$
- $y^2=57 x^6+47 x^5+28 x^4+61 x^3+30 x^2+29 x+48$
- $y^2=43 x^6+52 x^5+39 x^4+3 x^3+39 x^2+52 x+43$
- $y^2=14 x^6+12 x^5+58 x^4+6 x^3+58 x^2+12 x+14$
- $y^2=58 x^6+45 x^5+53 x^4+17 x^3+53 x^2+45 x+58$
- $y^2=64 x^6+18 x^5+10 x^4+41 x^3+28 x^2+36 x+8$
- $y^2=2 x^6+2 x^5+22 x^4+12 x^3+22 x^2+2 x+2$
- $y^2=2 x^6+38 x^5+32 x^4+39 x^3+72 x^2+19 x+57$
- $y^2=62 x^5+11 x^4+18 x^3+11 x^2+62 x$
- $y^2=24 x^6+23 x^5+64 x^4+68 x^3+64 x^2+23 x+24$
- $y^2=22 x^6+61 x^5+8 x^4+64 x^3+25 x^2+6 x+66$
- $y^2=62 x^6+58 x^5+17 x^4+30 x^3+45 x^2+51 x+26$
- $y^2=37 x^6+52 x^5+7 x^4+39 x^3+7 x^2+52 x+37$
- $y^2=58 x^6+55 x^5+63 x^4+71 x^3+63 x^2+55 x+58$
- $y^2=21 x^6+70 x^5+66 x^4+15 x^3+43 x^2+3 x+56$
- $y^2=65 x^6+2 x^5+35 x^4+x^3+35 x^2+2 x+65$
- $y^2=3 x^6+12 x^5+x^4+13 x^3+32 x^2+24 x+46$
- $y^2=50 x^6+45 x^5+32 x^4+57 x^3+24 x^2+39 x+69$
- $y^2=51 x^6+42 x^5+23 x^4+40 x^3+23 x^2+42 x+51$
- $y^2=33 x^6+12 x^5+58 x^4+67 x^3+39 x^2+49 x+11$
- $y^2=29 x^6+34 x^5+63 x^4+66 x^3+63 x^2+34 x+29$
- $y^2=30 x^6+13 x^5+58 x^4+10 x^3+58 x^2+13 x+30$
- $y^2=30 x^6+33 x^5+47 x^4+30 x^2+34 x+21$
- $y^2=32 x^6+48 x^5+7 x^4+70 x^3+7 x^2+48 x+32$
- $y^2=8 x^6+11 x^5+67 x^4+66 x^3+67 x^2+11 x+8$
- $y^2=46 x^6+67 x^5+21 x^4+59 x^3+26 x^2+35 x+49$
- $y^2=15 x^6+2 x^5+25 x^4+24 x^3+37 x^2+65 x+28$
- $y^2=20 x^6+19 x^5+63 x^4+60 x^3+28 x^2+38 x+34$
- $y^2=6 x^5+4 x^4+52 x^3+4 x^2+6 x$
- $y^2=17 x^6+69 x^5+35 x^4+35 x^2+69 x+17$
- $y^2=3 x^6+30 x^5+17 x^4+43 x^3+17 x^2+30 x+3$
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$
| The isogeny class factors as 1.73.c $\times$ 1.73.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.